# Report of the Lake Erie Yellow Perch Task Group

March 20, 2006



Members:

Megan Belore Andy Cook, (Co-chairman) Don Einhouse, (Co-chairman) Travis Hartman Kevin Kayle Roger Kenyon Carey Knight Tom MacDougall Mike Thomas Ontario Ministry of Natural Resources Ontario Ministry of Natural Resources New York Department of Environmental Conservation Ohio Department of Natural Resources Ohio Department of Natural Resources Pennsylvania Fish and Boat Commission Ohio Department of Natural Resources Ontario Ministry of Natural Resources Michigan Department of Natural Resources

Presented to:

Standing Technical Committee Lake Erie Committee Great Lakes Fishery Commission

## **Table of Contents**

| Introduction    |                                                           | 2  |
|-----------------|-----------------------------------------------------------|----|
| Charge 1:       | 2005 Fisheries Review and Population Dynamics             | 2  |
| g               | Age Composition and Growth                                |    |
|                 | ADMB Catch-Age Analysis and Population Estimates          |    |
|                 | Recruitment Estimator for Incoming Age 2 Yellow Perch     |    |
|                 | 2006 Population Size Projections                          |    |
|                 | Genetics                                                  |    |
| Charge 2:       | Harvest Strategy and RAH                                  | 8  |
|                 | Stock Recruitment Simulation                              |    |
|                 | Harvest Strategies and RAH Determination                  | 9  |
| Charge 3:       | Yellow Perch Management Plan                              | 10 |
| Charge 4:       | Eastern Basin (MU 4) Sub-stock Delineation and Boundaries | 10 |
| Charge 5:       | Lambda Review (weighting factors in catch-age analysis)   | 10 |
| Suggested Ne    | ew Charges for 2006-2007                                  | 11 |
| Acknowledgm     | ients                                                     | 12 |
| Literature Cite | ed                                                        | 12 |

*Note:* The data and management summaries contained in this report are provisional. Every effort has been made to insure their correctness. Contact individual agencies for complete state and provincial data. Data reported in pounds for years prior to 1996 have been converted from metric tonnes. Please contact the Yellow Perch Task Group or individual agencies before using or citing data published herein.

## Introduction

From April 2005 through March 2006, the Yellow Perch Task Group (YPTG) addressed the following charges:

- 1) Maintain centralized time series of data sets required for population models including:
  - a) fishery harvest, effort, age composition and biological parameters
  - b) survey indices of adult abundance, size at age, and biological parameters
  - c) supporting genetic research focusing on yellow perch stock discrimination
- 2) Support a sustainable harvest policy by:
  - a) examining exploitation strategies
  - b) recommending an allowable harvest (RAH) for 2006 in each management unit
  - c) supporting decision/risk analysis strategies for yellow perch management
- 3) Prepare a Lake Erie Yellow Perch Management Plan as a companion document to the Walleye Management Plan.
- 4) Continue to explore the special stock assessment issues for the eastern basin (MU 4) yellow perch resource. Maintain assessment approaches capable of detecting discrete stocks. Develop a MU 4 harvest policy that recognizes these special considerations.
- 5) Conduct a review of weighting factors provided to various sources input to the catch-atage model, recommend the most scientifically defensible method to weight data inputs in the model.

## **Charge 1: 2005 Fisheries Review and Population Dynamics**

The lakewide total allowable catch (TAC) in 2005 was 14.770 million pounds. This allocation represented a 34% increase from a TAC of 11.027 million pounds in 2004. For yellow perch assessment and allocation, Lake Erie is partitioned into four Management Units (Units, or MUs; Figure 1.1). The 2005 allocation by management unit was 3.716, 7.405, 3.340 and 0.309 million pounds for Units 1 to 4, respectively. The TAC in Management Unit 2 was originally set at 4.387 million pounds at the March 2005 LEC meeting, but was later adjusted due to a population model program coding error. The lakewide harvest of yellow perch in 2005 of 9.700 million pounds, was almost identical to 2004. Harvest by management unit was 2.5, 4.5, 2.4 and 0.3 million pounds for Units 1 to 4 respectively (Table 1.1). The fraction of TAC harvested was 68%, 61%, 71% and 94% in MUs 1 to 4 respectively. In 2005, Ontario harvested 6.2 million pounds, followed by Ohio (3.3 million lbs), Pennsylvania (184 thousand lbs), New York (53 thousand lbs.) and Michigan (49 thousand lbs.).

In MUs 1 to 3, Ontario fishers harvested most of their allocations (96%, 85% and 95% respectively). Ohio fishers attained 52% of the quota in the western basin (MU1) and 43% in the central basin MUs 2 and 3. Michigan anglers in MU 1 (16%) and Pennsylvania fisheries in MU 3 (36%) did not attain half of their quotas. In MU 4, the proportion of TAC harvested was 69% for New York fisheries, 79% in Pennsylvania and 115% in Ontario (unadjusted for 3.3% ice allowance).

Ontario's fraction of lakewide yellow perch harvest increased to 63% in 2005 from 54% in 2004. (Table 1.1, Figure 1.2). This increase was attributed to strong performance of Ontario fisheries in MU 2 and MU 3 and to a smaller extent, in MU 4. Ohio's proportion of lakewide harvest was 34% in 2005, down from 41% in 2004. Harvest in Michigan, Pennsylvania and New York jurisdictions represented 3% of the lakewide harvest combined in 2005.

Harvest, fishing effort, and fishery harvest rates are summarized for the time period 1995-2005 by management unit, year, agency, and gear type in Tables 1.2 to 1.5. Trends over a longer time series (1975-2005) are depicted graphically for harvest (Figure 1.2), fishing effort (Figure 1.3), and harvest rates (Figure 1.4) by management unit and gear type. The spatial distributions in 2005 of harvest (all gears), and effort by gear are presented in Figures 1.5 through 1.8 respectively.

Harvest from commercial trap nets decreased 10% in MU 2 but increased in Units 1,3, and 4 by 24%, 7 times, and 2 times respectively. Trap net effort (lifts) in 2005 decreased in MU 1 (10%) and MU 2 (24%) but increased 15 times (from very low effort the last few years) and 4 times in MU 3 and MU 4 respectively. Ohio trapnets re-entered the MU 3 fishery in 2005 following three years of absence. Trap net harvest rates increased in MU 1 (38%) and MU 2 (19%), but decreased in MU 3 (51%) and MU 4 (51%).

Ontario's yellow perch harvest from large mesh gill nets (3 inch or greater) in 2005 ranged from 6% to 8% of the gill net harvest in MUs 1-3 but was negligible in MU 4 (<1%). Harvest, effort and catch per unit effort from *a*) standard yellow perch effort (<3 inch stretched mesh) and *b*) larger mesh sizes, are distinguished in Tables 1.2 to 1.5. Targeted gill net effort decreased in MU 1 (15%) but doubled in MU 2 and MU 4 and increased in MU 3 (36%) from 2004. Gill net effort remained lower in 2005 compared to the 1990's and earlier decades (Figure 1.3). Targeted gill net harvest rates remained the same in 2005 compared to 2004 in MU 1, but decreased 34% in MU 2, 16% in MU 3, and 10% in MU 4.

In 2005, sport harvest in U.S. waters decreased in MU 1 (27%), MU 2 (29%), MU 3 (40%) and MU 4 (38%). U.S. angling effort decreased in MU 1 (12%), MU 3 (20%) and MU 4

(5%) but increased by 19% in Unit 2. The sport harvest of yellow perch from Ontario waters is assessed periodically. A western basin access creel survey conducted in Ontario waters from June to September, 2005 estimated 17,266 yellow perch were harvested and a total of 20,088 were caught. This angler harvest represented 0.3% of Ontario's MU 1 yellow perch harvest (5.5 million fish). Angling harvest rates are expressed as kg harvested /angler hour graphically for pooled jurisdictions (Figure 1.8) while harvest rates for jurisdictions are expressed as number of fish harvested /angler hour (Tables 1.2-1.5). Sport harvest rates declined lakewide from 2004 in kg/hr by 17%, 40%, 24% and 35% in MUs 1 to 4 respectively. When sport harvest rates are expressed as fish / hr, harvest rates increased marginally in MU 1 and MU 4 for Michigan, Ohio, Pennsylvania and New York but decreased by approximately 1 fish/hr in Units 2 and 3 in Ohio and Pennsylvania waters.

Ontario uses a commercial ice allowance policy implemented in 2002, by which 3.3% is subtracted from commercial landed weight. This step was taken so that ice was not deducted from fishers' quotas. Ontario's landed weights in the YPTG report have not been adjusted to account for ice content. Ontario's reported yellow perch harvest in tables and figures is represented exclusively by the commercial gill net fishery. Reported sport harvests for Michigan, Ohio, Pennsylvania and New York are based on creel survey estimates. Additional fishery documentation is available in annual agency reports.

#### Age Composition and Growth

The yellow perch harvest in 2005 consisted mostly of the 2001 (age 4) year class in MUs 1 to 3 while older year classes (1999, 1998 and earlier) were more dominant in the MU 4 harvest (Table 1.6). The strong 2003 year class (age 2) contributed little to trap net and gill net fisheries in MUs 1 to 3, but was more significant in the MU 4 gill net fishery. This year class was substantial in the MU 1 and MU 2 2005 sport fisheries, but was only marginal in MU 3 and MU 4 sport fisheries. Age 3 and 5 yellow perch (2002 and 2000 year classes) were not prominent in fisheries, although the 2000 year class represented a larger proportion of harvest in MU 4.

Yellow perch growth differs among life stages and between basins, illustrated by trends in length at age (Figure 1.9). An abundance of yellow perch growth data exists among Lake Erie agencies. For simplicity, Figure 1.9 is comprised of young-of-the-year data from summer and fall interagency trawls, while age 1 and older data are from Ontario Partnership gill net surveys (MUs 1 and 4) and Ohio fall trawls (MUs 2 and 3). Size at age time series results describe generally stable or improving length at age for ages 0-4 in management units 2, 3 and

4. Growth in management unit 1 appears to be generally stable or declining slightly among age groups 1 and older. In 2005, growth of YOY yellow perch appeared elevated in the western and eastern basins, but declined from 2004 levels in central basin MUs 2 and 3 (Figure 1.9). Reduced length-at-age trends are also being exhibited by older fish at age in the central basin. No long term trends are apparent in the western basin for older perch, and eastern basin adult yellow perch are sending mixed signals regarding improved growth rates (Figure 1.9).

The task group continues to update yellow perch growth data in: (1) weight-at-age values recorded annually in the harvest and (2) length and weight-at-age values taken from interagency trawl and gill net surveys. These values are applied in the calculation of population biomass and the forecasting of harvest in the approaching year.

#### ADMB Catch-Age Analysis 2006

Population size for each management unit was estimated by catch-at-age analysis using AD Model Builder, with the Commercial Selectivity Index (CSI) version incorporating commercial gill net catchability coefficients based on the seasonal distribution of harvest and relative catch rates. The approach was unchanged from the last several years' methodology with 2005 data appended to the time series. Estimates of population size, biomass and parameters such as survival and exploitation rates are presented for 1990-2005 in Table 1.7 and for 1975-2005 in Figures 1.10–1.13 respectively. Mean weight-at-age from surveys was applied to abundance estimates to generate population biomass estimates (Table 1.8 and Figure 1.11). Population estimates are critical to monitoring the status of stocks and determining allowable harvest. Abundance estimates should be interpreted with several caveats. Inclusion of abundance estimates from 1975 to 2005 implies that the time series are continuous. Lack of data continuity weakens the validity of this assumption. Survey data from multiple agencies are represented only in the latter part of the time series, while methods of fishery data collection have also varied. Some model parameters are constrained to constants, such as natural mortality, catchability and selectivity blocks. This technique lessens our ability to directly compare abundance levels over three decades. In addition, commercial gill net selectivity was estimated independently in the latter part of the time series using gill net selectivity curves derived from index gillnet data by the method of Helser (1998), involving back calculation of length-at-age and weightings based on the monthly distribution of harvest-at-age. With catchage analysis, the most recent year's data estimates inherently have the widest error bounds. This is to be expected for cohorts that remain at-large in the population.

Population estimates are derived by minimizing an objective function weighted by data sources including fishery effort, fishery catch and survey catch rates. The weightings (or lambdas) of effort data are calculated by the ratio of variance of observed log-catch to log-effort (Quinn and Deriso, 1999). Weightings of fishery catch and survey catch rates are solved iteratively until convergence occurs; until lambdas remain relatively constant (they don't change within a factor of 0.1). While lambdas within similar parameter groups (i.e.: effort, catch and surveys) are solved and weighted unequally, the groups themselves are given equal weight. Data weightings are presented in Appendix Table 1. Plots of fishery and survey data residuals from catch-age analysis are presented in the Appendix Figures 1–4. In order to address this lambda calculation process fully, a new charge was undertaken in 2005-2006 to derive the most scientifically defensible model lambdas. See section below under *"Charge 5: Lambda Review"* 

#### Recruitment Estimator for Incoming Age 2 Yellow Perch

Age 2 recruitment in 2006 was predicted by linear regression of juvenile yellow perch trawl indices against catch-age analysis estimates of two-year-old abundance in each management unit. Age 2 yellow perch recruitment in 2006 was calculated using the mean of values predicted from the indices listed in Appendix Table 2. Data from trawl index series for the time period examined are presented in Appendix Table 3 (geometric means) and Appendix Table 4 (arithmetic means), while a key that summarizes abbreviations used for the trawl series is presented as a legend in the Appendix.

Estimates of age 2 recruitment for 2006 (the 2004 year class) were below average in all management units (Table 1.7, Appendix Table 2). The 2004 year class is expected to contribute minimally to fisheries in 2006.

#### 2006 Population Size Projection

Stock size estimates for 2006 (ages 3 and older) were projected from catch-age analysis estimates of 2005 population size and age-specific survival rates in 2005 (Table 1.8). Projected age 2 recruitment from the 2004 year class (method described above) was added to the 2006 population estimate for older fish in each unit, producing the total standing stock in 2006 (Table 1.8). Standard errors and ranges for estimates are provided for each age in 2005, and following estimated survival (from ADMB), for 2006. Descriptions of *min, mean*, and *max* population estimates refer to the estimates minus or plus one age-specific standard error.

Stock size estimates projected for 2006 were high due primarily to the 2003 year class

(Table 1.7 and Figure 1.10). Due to the weaker 2004 year class, estimated abundance of ages 2+ yellow perch in 2006 ranged from 62% to 68% of 2005 abundance across management units. Abundance projections for 2006 age 2 and older yellow perch were 48, 79, 77 and 7 million perch in management units 1 to 4 respectively. Estimates of abundance for age 3 and older yellow perch in 2006 were close to or more than double 2005 age 3+ estimates in MUs 1-3 while MU 4 estimates of age 3 and older yellow perch were similar for 2005 and 2006. Age 3 and older abundance in 2006 was projected to be 45, 74, 72, and 7 million fish in Units 1 to 4 respectively.

As a function of population estimates and mean weight-at-age from surveys, biomass estimates in 2005 were among the highest in the time series (Figure 1.11). Total biomass estimates of age 2 and older yellow perch for 2006 were generally high for the time series in all MUs and the highest in the series for MU 3 (Figure 1.11). Total biomass decreased slightly from 2005 estimates in MU 1 (24%), MU 2 (11%) and MU 4 (19%) while MU 3 biomass increased 8%. The strong 2003 year class (age 3) is expected to represent the largest fraction of total biomass in 2006 in MU 1 (63%), MU 2 (53%), and MU 3 (60%) but is proportionally lower (26%) in MU 4 (Table 1.8).

Estimates of yellow perch survival for ages 3 and older in 2004 were 47%, 51%, 59% and 63% in MU 1, 2, 3 and 4, respectively (Figure 1.12). In 2005, estimated survival rates (ages 3+) were 44%, 48%, 56% and 60% in Units 1 through 4. As expected, survival rates were higher for fish ages 2 and older, than ages 3 and older, since new recruits are less vulnerable to fishing mortality. Albeit with fluctuations, estimated survival has improved gradually in all management units since early to mid 1990s.

Estimated exploitation rates in 2004 were 26%, 20%, 10% and 5% in Management Units 1–4, respectively, for ages 3 and older. Exploitation rates for 2005 were estimated at 28%, 24%, 14% and 9% for yellow perch ages 3 and older across the MUs (Figure 1.13). Exploitation rates of yellow perch ages 2 and older are lower since new recruits are less vulnerable to fishing.

#### Yellow Perch Genetics

During 2005 the YPTG supported genetic stock discrimination research by collecting yellow perch tissue samples for Dr. Carol Stepien at the University of Toledo and Dr. Rocky Ward at the United States Geological Survey office in Wellsboro, Pennsylvania. In recent years this support has become an annual endeavor by the YPTG with the expectation that genetic

research will expand our understanding of yellow perch stock structure and assist in defining management unit delineation. Ongoing tissue collections from spawning concentrations should assemble a database representing a stock library for Lake Erie yellow perch. The YPTG will to continue to provide support to genetic stock discrimination research initiatives, as requested.

#### Charge 2: Harvest Strategy and RAH

#### Harvest Strategy Methodology

In 2006, fishing rates applied in 2005 ( $F_{2005}$ ) are presented for MUs 1-3 in Tables 2.1.1-2.1.3 and in Table 2.2.1 for all management units. These rates are the same as  $F_{0.1}$  fishing rates presented in the 2004 YPTG report for Units 1, 2 and 3. In 2004,  $F_{0.1}$  values were derived based on the ratio of average yield to average recruitment plotted against fishing rates in simulations that assumed gamma stock-recruitment functions based on 1975-2003 stock and recruitment estimates.  $F_{0.1}$  was determined from the fishing rate at which the slope was 10% of the initial slope of the curve. This approach does not assume knife-edge recruitment. Parameters include mean weight-at-age from harvest (recent two-year mean), age specific selectivities (recent two-year mean) from catch-age analysis weighted by sharing formula along with survey maturity data for the spawning stock. The simulation assumes that the targeted fishing rates will be realized for all gear types. Simulation methodology and risk assessment is described below.

#### Stock-Recruitment Simulation

This simulation approach documented in 2004 remains the same with the exception that the time series used for the stock-recruitment relationship is shorter (1982-2004). The time series was shortened as the task group believes that conditions during the 1970s were more favorable for supporting recruitment compared to the period after in which municipal phosphorus loading targets were achieved (Dolan 1993). The length of the spawner-recruit S/R time series is relevant for assessing the risk associated with fishing rates. Spawner-recruit relationships were described by gamma functions (Reish et al. 1985 in Quinn et al. 1999) with the recognition that environmental factors exert major influence on recruitment. The YPTG created population simulations based on gamma stock recruitment functions, influenced by environmental factors. Environment Factors (EF) were derived from residuals of the S/R relationship as:

#### *EF* = (*observed recruitment*)/(*predicted recruitment*)

Two years of recent abundance estimates were used to initiate simulations. Recruitment for each year was estimated from the S/R function, and then multiplied by an EF selected randomly from the observed distribution of residuals (EFs). This process extended over 20 years and 100 replicates under a broad range of fishing mortality rates (0 to 2) to produce measures of risk. Other model parameters included were consistent with ADMB catch-at-age analysis. This process, applied to populations in each management unit, allowed the YPTG to quantify risk associated with various fishing rates, while giving consideration to stockrecruitment patterns and environmental influences experienced by yellow perch during recent decades in Lake Erie. Biological reference points including spawner biomass (as a fraction of an unfished population), survival rates, and the probability of attaining low levels of abundance comparable to 1993-94 were included as outputs. A further refinement since the 2005 YPTG report included averaging the results of simulations over ten multiple runs. Updated F<sub>0.1</sub> reference points were derived based on the fishing rate at which the slope equaled 10% of the initial slope when average yield was plotted against instantaneous fishing mortality rate. Results are presented for Management Units 1 to 3 in Tables 2.1.1-2.1.3.

#### Harvest Strategies and RAH Determination

Risk levels associated with fishing rates based on simulations updated in 2006 are presented for MUs 1, 2 and 3 (Tables 2.1.1 – 2.1.3). Target fishing rates used for TACs in 2005 ( $F_{2005}$ ) are proposed for 2006 TACs and are presented for Management Units 1 to 4 (Table 2.2.1). Since charge 5 (lambda review) is not yet complete, new " $F_{0.1}$ " rates are presented as biological reference points in tables 2.1.1 – 2.1.3.

Yellow perch allocation based on lake area of each jurisdiction was applied in 2005 and continues in 2006. Allocation shares by management unit and jurisdiction are:

| <u>MU 1</u> : | MI 8.1%  | OH 49.6%  | ONT 42.3% |
|---------------|----------|-----------|-----------|
| <u>MU 2</u> : | OH 57.5% | ONT 42.5% |           |
| <u>MU 3</u> : | OH 31.9% | PA 11.9%  | ONT 56.1% |
| <u>MU 4</u> : | NY 27.6% | PA 17.2%  | ONT 55.2% |

Allocation by Management Unit and Jurisdiction, 2006:

#### Charge 3: Lake Erie Yellow Perch Management Plan

With oversight by the Standing Technical Committee (STC), the YPTG was charged with preparation of a Lake Erie Yellow Perch Management Plan (YPMP) as a companion document to the recently completed Walleye Management Plan. Completion of this charge was dependent on resolving Charge 5 (catch-age analysis data weighting and definition of lambdas). Establishing population objectives for the YPMP is dependent on final model configurations and risk outcomes using endorsed data weighting approaches. The STC has now prepared a plan outline, and during the 2006-07 work cycle will be addressing these charges. It is expected to be a significant endeavor by the YPTG.

#### Charge 4: Eastern Basin (MU 4) Sub-stock Delineation and Boundaries

Yellow perch in eastern Lake Erie have been treated as a single stock for assessment and allocation purposes since the 1980s. However, MU4 is notable among Lake Erie's yellow perch management units as the area where yellow perch fisheries are more often spatially isolated within the basin, and yellow perch habitat remains more clearly partitioned by lake bathymetry. Also, there has been evidence of differing recruitment patterns within various parts of the basin. Finally, the Myers and Bence (2001) independent review of YPTG stock assessment efforts identified MU4 as a special case where stock definition seemed evident within the basin. Recently, eastern basin yellow perch stock assessment has been examined as part of a thorough technical review being pursued by the Ontario Ministry of Natural Resources and New York Department of Environmental Conservation (OMNR, 2006). At present, this document supports the YPTG's ongoing practice of treating the east basin yellow perch resource as one unit, i.e. "MU4", for stock assessment purposes. Nevertheless, there remains enough evidence for sub-stocks within MU4 that yellow perch assessments in this area should explore approaches capable of detecting, describing and managing discrete stocks. During 2005, no further progress was made in assessing MU4 sub-stocks. However, MU4 stock assessment and harvest policy considerations are expected in 2006-07 as a planned component of the preparation of the Yellow Perch Management Plan (see Charge 3).

#### Charge 5: Lambda Review – data weighting factors in catch-age analysis

In 2005, the YPTG was charged with reviewing the methodology of assigning weighting factors to data sources in the catch-at-age model. The current weighting methodology is described in *Charge 1 ADMB Catch-Age Analysis 2006*. The catch-age analysis model assumes

that fishery catchability is relatively constant within time periods (blocks). It has been suggested that fishery data conforming to this criterion should be weighted more than fishery data exhibiting either greater density dependence or no relationship between fishery catch rates and abundance. Firstly, the task group focused on fishery effort weighting since these weights are calculated initially and influence derivation of catch and survey lambdas. A spreadsheet template for fishery and survey catch rates was created based on a power model discussed by Harley et al. (2001) where  $catch_rate = qN^{\beta}$  and catchability = q if fishery catch rates are density independent ( $\beta$ =1) or catchability is a function of q and  $\beta$  if fishery catchability is density dependent ( $\beta$ ≠1). Regression of log fishery catch rates against log survey catch rates within jurisdictions provided a measure of density dependence of fishery catch rates ( $\beta$  or slope). While a number of possibilities were considered, the slope was proposed as the basis for setting fishery effort weightings and the iterative approach for catch and survey data remained outstanding.

A preliminary assessment of current and proposed percid task group data weighting methodology was undertaken by Dr. James Bence (M.S.U.). The independent review suggested there was a more appropriate, alternative interpretation of the variance ratio method used to generate effort lambdas. Also, weighting the three model data components (fishery effort, fishery catch, and survey catch rates) equally with a maximum of 1.0 for each component may be problematic. Dr. Bence thought the YPTG effort lambda template could be applied in the short term if fishery catchability time blocks did not address density dependent catchability satisfactorily. He added that the issue of density dependent catchability and data weighting are not necessarily synonymous. Options for deriving catch lambdas such as minimizing the difference between fishery sample precision and catch variance from the model were discussed. The YPTG will continue to act on this charge in the coming year, and the suggestion of a lambda workshop in 2006 met with favorable response from the YPTG and LEC.

#### Suggested New Charges for 2006-2007

 Examine methods of expressing recruitment indices including area based trawl catch rates (number / ha) and harmonization of approaches used by the walleye and forage task groups
 Reassess approaches to model parameterization (selectivity, catchability, blocking) with the intention of standardizing approaches with the Walleye Task Group.

These new charges would be completed in time to support development of the YPMP.

### Acknowledgments

The task group wishes to thank the following people for providing support to the task group during the past year:

- Tim Bader (Ohio Department of Natural Resources, Division of Wildlife),
- Dr. James Bence (Michigan State University)
- Mike Bur (US Geological Survey- Biological Resources Division),
- Dr. Carol Stepien (University of Toledo),
- Bob Sutherland (Ontario Ministry of Natural Resources)
- Jeff Tyson (Ohio Department of Natural Resources, Division of Wildlife), and
- Larry Witzel (Ontario Ministry of Natural Resources)

The YPTG report could not be completed without the contributions of all Lake Erie staff from the Michigan Department of Natural Resources, Ohio Division of Wildlife, Pennsylvania Fish and Boat Commission, New York Department of Environmental Conservation, US Geological Survey-Biological Resources Division, and the Ontario Ministry of Natural Resources. In addition, the YPTG expresses thanks to the Great Lakes Fishery Commission for their continued support.

## **Literature Cited**

- Dolan, D.M. 1993. Point source loadings of phosphorus to Lake Erie: 1986:1990. J. Great Lakes Res. 19(2):212-223.
- Harley, S.J., R.A. Myers, and A. Dunn. 2001. Is catch-per-unit-effort proportional to abundance? Can. J. Fish. Aquat. Sci. 58: 1760-1772.
- Helser, T.E., J.P. Geaghan and R.E. Condrey. 1998. Estimating gill net selectivity using nonlinear response surface regression. Can. J. Fish. Aquat. Sci. 55: 1328-1337.
- Hilborn, R. and C.J. Walters. 1992. Quantitative Fisheries Stock Assessment : Choice, Dynamics and Uncertainty. Routledge, Chapman and Hall, Inc. NY.

- MacGregor, R.B. and L.D. Witzel. 1987. A twelve year study of the fish community in the Nanticoke Region of Long Point Bay, Lake Erie: 1971-1983 Summary Report. Lake Erie Fisheries Management Unit. Report 1987-3. 615 pp.
- Myers, R.A. and J.R. Bence. 2001. The 2001 assessment of perch in Lake Erie; a review. Presented to the Lake Erie Committee, Great Lakes Fishery Commission.
- Ontario Ministry of Natural Resources. 2006. Status of the Fish Community and Fisheries in Eastern Lake Erie. Results from the 2000-2004 East Basin Rehabilitation Plan. Ont. Min Nat. Res. Lake Erie Management Unit. 132 p.; in preparation.
- Quinn, T.J. and R.B. Deriso. 1999. Quantitative Fish Dynamics. Oxford University Press. NY.
- Reish, R.L., R.B. Deriso, D. Ruppert, and R.J. Carroll. 1985. An investigation into the population dynamics of Atlantic Menhaden (*Brevoortia tyrannus*). Can. J. Fish. Aquat. Sci. 42: 147-157.
- Yellow Perch Task Group (YPTG). 2004. Report of the Yellow Perch Task Group to the Standing Technical Committee, Lake Erie Committee of the Great Lakes Fishery Commission.
- Yellow Perch Task Group (YPTG). 2005. Report of the Yellow Perch Task Group to the Standing Technical Committee, Lake Erie Committee of the Great Lakes Fishery Commission.

|                    |              | Ontario                | *        | Ohio                   |          | Michiga           | in      | Pennsylva          | nia      | New Yo           | ork      | Total                  |
|--------------------|--------------|------------------------|----------|------------------------|----------|-------------------|---------|--------------------|----------|------------------|----------|------------------------|
|                    | Year         | Catch                  | %        | Catch                  | %        | Catch             | %       | Catch              | %        | Catch            | %        | Catch                  |
| Unit 1             | 1995         | 524,790                | 38       | 784,980                | 57       | 77,175            | 6       |                    |          |                  |          | 1,386,945              |
| onit i             | 1996         | 704,167                | 36       | 1,125,716              | 57       | 134,810           | 7       |                    |          |                  |          | 1,964,693              |
|                    | 1997         | 1,091,844              | 48       | 1,071,025              | 47       | 111,819           | 5       |                    |          |                  |          | 2,274,688              |
|                    | 1998         | 1,170,533              | 52       | 968,842                | 43       | 132,051           | 6       |                    |          |                  |          | 2,271,426              |
|                    | 1999         | 1,048,100              | 51       | 908,548                | 44       | 101,549           | 5       |                    |          |                  |          | 2,058,197              |
|                    | 2000         | 980,323                | 47       | 1,038,650              | 50       | 67,010            | 3       |                    |          |                  |          | 2,085,983              |
|                    | 2001         | 813,066                | 45       | 915,641                | 51       | 70,910            | 4       |                    |          |                  |          | 1,799,617              |
|                    | 2002         | 1,454,105              | 50       | 1,316,553              | 45       | 147,065           | 5       |                    |          |                  |          | 2,917,723              |
|                    | 2003         | 1,179,667              | 44       | 1,406,385              | 53       | 84,878            | 3       |                    |          |                  |          | 2,670,930              |
|                    | 2004         | 1,698,761              | 59       | 1,090,669              | 38       | 94,732            | 3       |                    |          |                  |          | 2,884,162              |
|                    | 2005         | 1,513,890              | 60       | 965,231                | 38       | 49,485            | 2       |                    |          |                  |          | 2,528,606              |
| Unit 2             | 1995         | 1,073,835              | 57       | 804,825                | 43       |                   |         |                    |          |                  |          | 1,878,660              |
|                    | 1996         | 1,290,998              | 61       | 823,425                | 39       |                   |         |                    |          |                  |          | 2,114,423              |
|                    | 1997         | 1,826,180              | 63       | 1,079,882              | 37       |                   |         |                    |          |                  |          | 2,906,062              |
|                    | 1998         | 1,797,458              | 74       | 627,944                | 26       |                   |         |                    |          |                  |          | 2,425,402              |
|                    | 1999         | 1,572,829              | 62       | 974,123                | 38       |                   |         |                    |          |                  |          | 2,546,952              |
|                    | 2000         | 1,484,125              | 56       | 1,169,234              | 44       |                   |         |                    |          |                  |          | 2,653,359              |
|                    | 2001         | 1,794,275              | 51       | 1,747,069              | 49       |                   |         |                    |          |                  |          | 3,541,344              |
|                    | 2002         | 2,190,621              | 52       | 1,986,730              | 48       |                   |         |                    |          |                  |          | 4,177,351              |
|                    | 2003         | 2,107,639              | 50       | 2,113,285              | 50       |                   |         |                    |          |                  |          | 4,220,924              |
|                    | 2004         | 2,051,473              | 48       | 2,246,264              | 52       |                   |         |                    |          |                  |          | 4,297,737              |
|                    | 2005         | 2,666,231              | 59       | 1,843,190              | 41       |                   |         |                    |          |                  |          | 4,509,421              |
| Unit 3             | 1995         | 465,255                | 80       | 83,790                 | 14       |                   |         | 30,870             | 5        |                  |          | 579,915                |
|                    | 1996         | 512,293                | 72       | 186,695                | 26       |                   |         | 9,041              | 1        |                  |          | 708,029                |
|                    | 1997         | 829,353                | 77       | 219,664                | 20       |                   |         | 23,360             | 2        |                  |          | 1,072,377              |
|                    | 1998         | 811,903                | 73       | 274,993                | 25       |                   |         | 28,527             | 3        |                  |          | 1,115,423              |
|                    | 1999         | 665,703                | 65       | 352,635                | 34       |                   |         | 8,925              | 1        |                  |          | 1,027,263              |
|                    | 2000         | 771,646                | 62       | 443,250                | 36       |                   |         | 32,613             | 3        |                  |          | 1,247,509              |
|                    | 2001         | 999,450                | 64       | 464,811                | 30       |                   |         | 91,211             | 6        |                  |          | 1,555,472              |
|                    | 2002         | 1,192,691              | 60       | 640,104                | 32       |                   |         | 140,821            | 7        |                  |          | 1,973,616              |
|                    | 2003         | 1,667,133              | 72       | 481,558                | 21       |                   |         | 177,516            | 8        |                  |          | 2,326,207              |
|                    | 2004         | 1,453,419              | 62       | 659,447                | 28       |                   |         | 244,063            | 10       |                  |          | 2,356,929              |
|                    | 2005         | 1,771,800              | 75       | 457,593                | 19       |                   |         | 142,028            | 6        |                  |          | 2,371,421              |
| Unit 4             | 1995         | 33,075                 | 80       |                        |          |                   |         |                    |          | 8,012            | 20       | 41,087                 |
|                    | 1996         | 30,495                 | 82       |                        |          |                   |         | 2,205              | 6        | 4,472            | 12       | 37,172                 |
|                    | 1997         | 36,171                 | 87       |                        |          |                   |         | 3,049              | 7        | 2,387            | 6        | 41,607                 |
|                    | 1998         | 48,457                 | 93       |                        |          |                   |         | 538                | 1        | 3,175            | 6        | 52,170                 |
|                    | 1999         | 59,842                 | 92       |                        |          |                   |         | 2,216              | 3        | 3,234            | 5        | 65,292                 |
|                    | 2000         | 35,686                 | 73       |                        |          |                   |         | 10,950             | 22       | 2,458            | 5        | 49,094                 |
|                    | 2001         | 35,893                 | 60       |                        |          |                   |         | 8,337              | 14       | 15,319           | 26       | 59,549                 |
|                    | 2002         | 87,541                 | 54       |                        |          |                   |         | 46,903             | 29       | 26,903           | 17       | 161,347                |
|                    | 2003         | 84,772                 | 60<br>40 |                        |          |                   |         | 39,821             | 28       | 16,511           | 12<br>27 | 141,104                |
|                    | 2004<br>2005 | 98,733<br>195,347      | 49<br>67 |                        |          |                   |         | 46,344<br>42,226   | 23<br>15 | 54,862<br>53,468 | 27<br>18 | 199,939<br>291,041     |
|                    |              |                        |          |                        |          |                   |         |                    |          |                  |          |                        |
| Lakewide<br>Totals | 1995<br>1996 | 2,096,955<br>2,537,953 | 54<br>53 | 1,673,595              | 43       | 77,175<br>134,810 | 2<br>3  | 30,870<br>11,246   | 1        | 8,012<br>4,472   | <1<br><1 | 3,886,607              |
| iotais             | 1996<br>1997 | 2,537,953<br>3,783,548 |          | 2,135,836<br>2,370,571 | 44<br>29 | 134,810           |         | 26,409             | <1<br>~1 | 4,472<br>2,387   |          | 4,824,317              |
|                    | 1997         | 3,783,548<br>3,828,351 | 60<br>65 | 2,370,571<br>1,871,779 | 38<br>32 | 132,051           | 2<br>2  | 26,409<br>29,065   | <1<br><1 | 2,387<br>3,175   | <1<br><1 | 6,294,734<br>5 864 421 |
|                    | 1998         | 3,828,351 3,346,474    | 65<br>59 | 2,235,306              | 32<br>39 | 101,549           | 2       | 29,065             | <1<br><1 | 3,175            | <1<br><1 | 5,864,421<br>5,697,704 |
|                    | 2000         | 3,340,474<br>3,271,780 | 59<br>54 | 2,651,134              | 39<br>44 | 67,010            | 2       | 43,563             | < 1<br>1 | 3,234<br>2,458   | <1<br><1 | 6,035,945              |
|                    | 2000         | 3,642,684              | 54<br>52 | 3,127,521              | 44<br>45 | 70,910            | 1       | 43,503<br>99,548   | 1        | 15,319           | <1       | 6,955,982              |
|                    | 2001         | 3,042,084<br>4,924,958 | 52<br>53 | 3,943,387              | 43       | 147,065           | 2       | 187,724            | 2        | 26,903           | <1       | 9,230,037              |
|                    | 2002         | 5,039,211              | 53<br>54 | 4,001,228              | 43       | 84,878            |         |                    |          |                  |          |                        |
|                    |              |                        |          |                        |          |                   |         |                    |          |                  |          |                        |
|                    | 2003         | 5,302,386              | 54       | 3,996,380              | 43       | 94,878            | <1<br>1 | 217,337<br>290,407 | 2<br>3   | 16,511<br>54,862 | <1<br><1 | 9,359,165<br>9,738,767 |

 Table 1.1.
 Lake Erie yellow perch harvest in pounds by management unit (Unit) and agency, 1995-2005.

\* processor weight

|             |      |          |           | Unit 1    |            |            |
|-------------|------|----------|-----------|-----------|------------|------------|
|             |      | Michigan | Oh        | io        | Ontario (  | Gill Nets  |
|             | Year | Sport    | Trap Nets | Sport     | Small Mesh | Large Mesh |
|             | 1995 | 77,175   | 108,045   | 676,935   | 524,790    |            |
| Catch       | 1996 | 134,810  | 200,313   | 925,403   | 704,167    |            |
| (pounds)    | 1997 | 111,819  | 211,876   | 859,149   | 1,091,844  |            |
|             | 1998 | 132,051  | 184,142   | 784,700   | 1,170,533  |            |
|             | 1999 | 101,549  | 200,939   | 707,609   | 1,048,100  |            |
|             | 2000 | 67,010   | 240,541   | 798,109   | 980,323    |            |
|             | 2001 | 70,910   | 179,234   | 736,407   | 711,745    | 101,321    |
|             | 2002 | 147,065  | 337,829   | 978,724   | 1,359,637  | 94,468     |
|             | 2003 | 84,879   | 250,456   | 1,155,929 | 1,151,358  | 28,309     |
|             | 2004 | 94,732   | 289,136   | 801,533   | 1,637,488  | 61,273     |
|             | 2005 | 49,485   | 357,182   | 608,049   | 1,402,523  | 111,082    |
|             | 1995 | 35       | 49        | 307       | 238        |            |
| Catch       | 1996 | 61       | 91        | 420       | 319        |            |
| (Metric)    | 1997 | 51       | 96        | 390       | 495        |            |
| (tonnes)    | 1998 | 60       | 84        | 356       | 531        |            |
|             | 1999 | 46       | 91        | 321       | 475        |            |
|             | 2000 | 30       | 109       | 362       | 445        |            |
|             | 2001 | 32       | 81        | 334       | 323        | 46         |
|             | 2002 | 67       | 153       | 444       | 617        | 43         |
|             | 2003 | 38       | 114       | 524       | 522        | 13         |
|             | 2004 | 43       | 131       | 364       | 743        | 28         |
|             | 2005 | 22       | 162       | 276       | 636        | 50         |
|             | 1995 | 123,616  | 5,103     | 598,977   | 11,136     |            |
| Effort      | 1996 | 193,733  | 4,869     | 754,277   | 8,614      |            |
| (a)         | 1997 | 192,605  | 5,580     | 834,934   | 13,704     |            |
|             | 1998 | 183,882  | 5,446     | 863,336   | 19,095     |            |
|             | 1999 | 184,710  | 5,185     | 941,350   | 12,846     |            |
|             | 2000 | 122,447  | 4,026     | 965,628   | 6,741      |            |
|             | 2001 | 97,761   | 1,518     | 720,923   | 2,167      | 2,142      |
|             | 2002 | 190,573  | 2,715     | 900,289   | 4,546      | 739        |
|             | 2003 | 121,638  | 2,213     | 1,182,694 | 3,725      | 395        |
|             | 2004 | 206,902  | 4,351     | 833,690   | 6,052      | 901        |
|             | 2005 | 98,429   | 3,903     | 816,959   | 5,170      | 1,182      |
| • • • - •   | 1995 | 2.8      | 9.6       | 4.3       | 21.4       |            |
| Catch Rates | 1996 | 3.3      | 18.7      | 4.9       | 37.0       |            |
| (b)         | 1997 | 2.8      | 17.2      | 3.7       | 36.1       |            |
|             | 1998 | 3.2      | 15.3      | 3.8       | 27.8       |            |
|             | 1999 | 2.1      | 17.6      | 3.3       | 37.0       |            |
|             | 2000 | 2.2      | 27.1      | 3.0       | 66.0       |            |
|             | 2001 | 2.9      | 53.5      | 3.4       | 149.1      | 21.5       |
|             | 2002 | 2.5      | 56.4      | 3.4       | 135.7      | 58.2       |
|             | 2003 | 2.4      | 51.3      | 3.5       | 140.1      | 32.4       |
|             | 2004 | 1.6      | 30.1      | 3.0       | 122.7      | 30.8       |
|             | 2005 | 1.7      | 41.5      | 3.1       | 123.0      | 42.6       |

Table 1.2.Catch, effort and catch per unit effort summaries for Lake Erie yellow perch fisheries in<br/>Management Unit 1 (Western Basin) by agency and gear type, 1995-2005.

(a) sport effort in angler-hours; gill net effort in km; trap net effort in lifts

(b) catch rates for sport in fish/hr, gill net in kg/km, trap net in kg/lift

|                         |      |           | Unit 2  |            |            |
|-------------------------|------|-----------|---------|------------|------------|
|                         |      | Ohi       | 0       | Ontario (  | Gill Nets  |
|                         | Year | Trap Nets | Sport   | Small Mesh | Large Mesh |
|                         | 1995 | 257,985   | 546,840 | 1,073,835  |            |
| Catch                   | 1996 | 323,334   | 500,091 | 1,290,998  |            |
| (pounds)                | 1997 | 498,945   | 580,937 | 1,826,180  |            |
|                         | 1998 | 304,661   | 323,283 | 1,797,458  |            |
|                         | 1999 | 389,973   | 584,150 | 1,572,829  |            |
|                         | 2000 | 565,009   | 604,225 | 1,484,125  |            |
|                         | 2001 | 905,088   | 841,891 | 1,593,704  | 200,571    |
|                         | 2002 | 1,099,971 | 886,759 | 1,892,070  | 298,551    |
|                         | 2003 | 1,255,205 | 858,080 | 2,019,617  | 88,022     |
|                         | 2004 | 1,287,747 | 958,517 | 1,893,871  | 157,602    |
|                         | 2005 | 1,162,746 | 680,444 | 2,446,007  | 219,723    |
|                         | 1995 | 117       | 248     | 487        |            |
| Catch                   | 1996 | 147       | 227     | 585        |            |
| (Metric)                | 1997 | 226       | 263     | 828        |            |
| (tonnes)                | 1998 | 138       | 147     | 815        |            |
|                         | 1999 | 177       | 265     | 713        |            |
|                         | 2000 | 256       | 274     | 673        |            |
|                         | 2001 | 410       | 382     | 723        | 91         |
|                         | 2002 | 499       | 402     | 858        | 135        |
|                         | 2003 | 569       | 389     | 916        | 40         |
|                         | 2004 | 584       | 435     | 859        | 71         |
|                         | 2005 | 527       | 309     | 1,109      | 100        |
|                         | 1995 | 6,467     | 388,238 | 18,337     |            |
| Effort                  | 1996 | 5,834     | 316,736 | 14,572     |            |
| (a)                     | 1997 | 8,721     | 575,365 | 24,974     |            |
|                         | 1998 | 7,943     | 422,176 | 23,823     |            |
|                         | 1999 | 7,502     | 563,819 | 13,179     |            |
|                         | 2000 | 5,272     | 601,712 | 6,266      |            |
|                         | 2001 | 4,747     | 594,741 | 3,445      | 4,975      |
|                         | 2002 | 7,675     | 658,799 | 4,786      | 3,209      |
|                         | 2003 | 10,214    | 632,813 | 5,311      | 1,555      |
|                         | 2004 | 12,023    | 659,454 | 4,929      | 2,787      |
|                         | 2005 | 9,103     | 784,942 | 9,716      | 2,173      |
| <b>A</b> • • <b>-</b> • | 1995 | 18.1      | 3.5     | 26.6       |            |
| Catch Rates             | 1996 | 25.1      | 4.2     | 40.1       |            |
| (b)                     | 1997 | 25.9      | 2.8     | 33.2       |            |
|                         | 1998 | 17.4      | 2.6     | 34.2       |            |
|                         | 1999 | 23.6      | 3.0     | 54.1       |            |
|                         | 2000 | 48.6      | 2.9     | 107.4      |            |
|                         | 2001 | 86.5      | 3.2     | 209.9      | 18.3       |
|                         | 2002 | 65.0      | 3.1     | 179.3      | 42.1       |
|                         | 2003 | 55.7      | 3.3     | 172.5      | 25.7       |
|                         | 2004 | 48.6      | 3.7     | 174.3      | 25.6       |
|                         | 2005 | 57.9      | 2.8     | 114.2      | 45.9       |

**Table 1.3**.Catch, effort and catch per unit effort summaries for Lake Erie yellow perch fisheries in<br/>Management Unit 2 (western Central Basin) by agency and gear type, 1995-2005.

(a) sport effort in angler-hours; gill net effort in km; trap net effort in lifts

(b) catch rates for sport in fish/hr, gill net in kg/km, trap net in kg/lift

|             |      |           |         | Unit       | 3          |           |         |
|-------------|------|-----------|---------|------------|------------|-----------|---------|
|             |      | Ohio      | )       | Ontario (  | Gill Nets  | Pennsylv  | /ania   |
|             | Year | Trap Nets | Sport   | Small Mesh | Large Mesh | Trap Nets | Sport   |
|             | 1995 | 63,945    | 19,845  | 465,255    |            | 0         |         |
| Catch       | 1996 | 103,414   | 83,281  | 512,293    |            | 5,292     | 3,749   |
| (pounds)    | 1997 | 54,776    | 164,888 | 829,353    |            | 7,398     | 15,962  |
|             | 1998 | 90,082    | 184,911 | 811,903    |            | 5,291     | 23,236  |
|             | 1999 | 106,258   | 246,377 | 665,703    |            | 2,905     | 6,020   |
|             | 2000 | 156,510   | 286,740 | 771,646    |            | 5,930     | 26,683  |
|             | 2001 | 4,472     | 460,339 | 948,622    | 50,828     | 2,602     | 96,946  |
|             | 2002 | 0         | 640,104 | 1,094,894  | 97,797     | 2,009     | 138,812 |
|             | 2003 | 0         | 481,559 | 1,647,047  | 20,086     | 5,050     | 172,467 |
|             | 2004 | 0         | 659,447 | 1,443,314  | 10,105     | 7,753     | 236,310 |
|             | 2005 | 43,253    | 414,340 | 1,657,498  | 113,969    | 15,228    | 126,800 |
|             | 1995 | 29        | 9.0     | 211        |            | 0         |         |
| Catch       | 1996 | 47        | 38      | 232        |            | 2.4       | 1.7     |
| (Metric)    | 1997 | 25        | 75      | 376        |            | 3.4       | 7.2     |
| (tonnes)    | 1998 | 41        | 84      | 368        |            | 2.4       | 11      |
|             | 1999 | 48        | 112     | 302        |            | 1.3       | 2.7     |
|             | 2000 | 71        | 130     | 350        |            | 2.7       | 12      |
|             | 2001 | 2.0       | 209     | 430        | 23         | 1.2       | 44      |
|             | 2002 | 0         | 290     | 497        | 44         | 0.9       | 63      |
|             | 2003 | 0         | 218     | 747        | 9.1        | 2.3       | 78      |
|             | 2004 | 0         | 299     | 655        | 4.6        | 3.5       | 107     |
|             | 2005 | 20        | 188     | 752        | 52         | 6.9       | 58      |
|             | 1995 | 3,258     | 42,234  | 6,843      |            | 0         |         |
| Effort      | 1996 | 2,730     | 69,887  | 6,184      |            | 185       | 12,850  |
| (a)         | 1997 | 2,455     | 126,530 | 9,423      |            | 441       | 43,377  |
|             | 1998 | 2,512     | 111,425 | 10,809     |            | 305       | 30,612  |
|             | 1999 | 2,388     | 176,603 | 4,338      |            | 243       | 28,485  |
|             | 2000 | 1,640     | 214,825 | 2,342      |            | 231       | 48,561  |
|             | 2001 | 32        | 269,062 | 2,451      | 1,047      | 175       | 90,214  |
|             | 2002 | 0         | 416,543 | 2,490      | 1,055      | 95        | 123,287 |
|             | 2003 | 0         | 256,890 | 4,617      | 316        | 87        | 138,720 |
|             | 2004 | 0         | 368,537 | 3,750      | 268        | 70        | 175,596 |
|             | 2005 | 947       | 305,885 | 5,098      | 743        | 129       | 127,462 |
| <b>.</b>    | 1995 | 8.9       | 1.3     | 30.8       |            |           |         |
| Catch Rates | 1996 | 17.2      | 2.8     | 37.5       |            | 13.0      | 0.8     |
| (b)         | 1997 | 10.1      | 3.1     | 39.9       |            | 7.6       | 0.9     |
|             | 1998 | 16.3      | 3.6     | 34.0       |            | 7.9       | 1.4     |
|             | 1999 | 20.2      | 3.5     | 69.6       |            | 5.4       | 1.3     |
|             | 2000 | 43.3      | 3.0     | 149.4      |            | 11.6      | 1.9     |
|             | 2001 | 63.4      | 2.9     | 175.4      | 22.0       | 6.7       | 2.6     |
|             | 2002 |           | 2.7     | 199.6      | 41.7       | 9.6       | 3.6     |
|             | 2003 |           | 3.1     | 161.8      | 28.8       | 26.3      | 5.3     |
|             | 2004 |           | 4.3     | 174.6      | 17.1       | 50.2      | 3.9     |
|             | 2005 | 20.7      | 3.1     | 147.4      | 69.6       | 53.5      | 2.9     |

 Table 1.4.
 Catch, effort and catch per unit effort summaries for Lake Erie yellow perch fisheries in

 Management Unit 3 (eastern Central Basin) by agency and gear type, 1995-2005.

(a) sport effort in angler-hours; gill net effort in km; trap net effort in lifts

(b) catch rates for sport in fish/hr, gill net in kg/km, trap net in kg/lift

|             |      |           |        | Unit       | 4          |           |        |
|-------------|------|-----------|--------|------------|------------|-----------|--------|
|             |      | New Y     | ork    | Ontario    | Gill Nets  | Pennsylv  | ania   |
|             | Year | Trap Nets | Sport  | Small Mesh | Large Mesh | Trap Nets | Sport  |
|             | 1995 | 3,122     | 4,890  | 33,075     |            | 0         |        |
| Catch       | 1996 | 2,822     | 1,650  | 30,495     |            | 0         | 2,205  |
| (pounds)    | 1997 | 1,241     | 1,146  | 36,171     |            | 0         | 3,049  |
|             | 1998 | 1,345     | 1,830  | 48,457     |            | 0         | 538    |
|             | 1999 | 694       | 2,540  | 59,842     |            | 0         | 2,216  |
|             | 2000 | 625       | 1,833  | 35,686     |            | 0         | 10,950 |
|             | 2001 | 27        | 15,292 | 34,284     | 1,608      | 0         | 8,337  |
|             | 2002 | 1,951     | 24,952 | 85,935     | 1,606      | 29        | 46,874 |
|             | 2003 | 1,048     | 15,464 | 84,648     | 124        | 0         | 39,822 |
|             | 2004 | 3,907     | 50,955 | 98,716     | 17         | 0         | 90,514 |
|             | 2005 | 7,726     | 45,742 | 195,258    | 52         | 0         | 42,226 |
|             | 1995 | 1.4       | 2.2    | 15.0       |            | 0         |        |
| Catch       | 1996 | 1.3       | 0.7    | 13.8       |            | 0         | 1.0    |
| (Metric)    | 1997 | 0.6       | 0.5    | 16.4       |            | 0         | 1.4    |
| (tonnes)    | 1998 | 0.6       | 0.8    | 22.0       |            | 0         | 0.2    |
|             | 1999 | 0.3       | 1.2    | 27.1       |            | 0         | 1.0    |
|             | 2000 | 0.3       | 0.8    | 16.2       |            | 0         | 5.0    |
|             | 2001 | 0.01      | 6.9    | 15.5       | 0.7        | 0         | 3.8    |
|             | 2002 | 0.9       | 11.3   | 39.0       | 0.7        | 0.01      | 21.3   |
|             | 2003 | 0.5       | 7.0    | 38.4       | 0.06       | 0         | 18.1   |
|             | 2004 | 1.8       | 23.1   | 44.8       | 0.01       | 0         | 41.0   |
|             | 2005 | 3.5       | 20.7   | 88.6       | 0.02       | 0         | 19.2   |
|             | 1995 | 532       | 12,115 | 1,375      |            | 0         |        |
| Effort      | 1996 | 533       | 6,535  | 1,063      |            | 0         | 7,292  |
| (a)         | 1997 | 292       | 8,905  | 1,073      |            | 0         | 13,747 |
|             | 1998 | 178       | 7,073  | 1,081      |            | 0         | 3,784  |
|             | 1999 | 118       | 5,410  | 872        |            | 0         | 13,623 |
|             | 2000 | 44        | 2,606  | 314        |            | 0         | 21,146 |
|             | 2001 | 39        | 22,950 | 128        | 28         | 0         | 12,451 |
|             | 2002 | 89        | 44,270 | 224        | 28         | 9         | 61,734 |
|             | 2003 | 91        | 33,162 | 373        | 21         | 0         | 32,525 |
|             | 2004 | 44        | 73,056 | 355        | 3.2        | 0         | 62,639 |
|             | 2005 | 179       | 58,667 | 782        | 7.8        | 0         | 70,921 |
|             | 1995 | 2.7       | 0.8    | 10.9       |            |           |        |
| Catch Rates | 1996 | 2.4       | 0.5    | 13.0       |            |           | 0.6    |
| (b)         | 1997 | 1.9       | 0.4    | 15.3       |            |           | 1.0    |
|             | 1998 | 3.4       | 0.7    | 20.3       |            |           | 0.3    |
|             | 1999 | 2.7       | 0.8    | 31.1       |            |           | 0.4    |
|             | 2000 | 6.4       | 0.2    | 51.5       |            |           | 1.7    |
|             | 2001 | 0.3       | 1.8    | 121.5      | 26.0       |           | 1.5    |
|             | 2002 | 9.9       | 1.3    | 174.0      | 25.0       | 1.5       | 2.4    |
|             | 2003 | 5.2       | 0.9    | 102.9      | 2.9        |           | 1.9    |
|             | 2004 | 40.3      | 1.4    | 126.1      | 2.4        |           | 1.7    |
|             | 2005 | 19.6      | 1.5    | 113.2      | 3.0        |           | 1.8    |

Table 1.5. Catch, effort and catch per unit effort summaries for Lake Erie yellow perch fisheries in Management Unit 4 (Eastern Basin) by agency and gear type, 1995-2005.

(a) sport effort in angler-hours; gill net effort in km; trap net effort in lifts(b) catch rates for sport in fish/hr, gill net in kg/km, trap net in kg/lift

|           |       | Unit 1    |      | Unit 2     |      | Unit 3    |      | Unit 4  |      | Lakewide   | е    |
|-----------|-------|-----------|------|------------|------|-----------|------|---------|------|------------|------|
| Gear      | Age   | Number    | %    | Number     | %    | Number    | %    | Number  | %    | Number     | %    |
|           | 1     | 0         | 0.0  | 0          | 0.0  | 0         | 0.0  | 0       | 0.0  | 0          | 0.0  |
|           | 2     | 342,031   | 6.3  | 463,483    | 5.7  | 98,677    | 2.3  | 110,973 | 23.2 | 1,015,163  | 5.5  |
|           | 3     | 407,607   | 7.5  | 260,891    | 3.2  | 239,687   | 5.7  | 32,449  | 6.8  | 940,633    | 5.1  |
| Gill Nets | 4     | 3,243,943 | 59.6 | 6,829,441  | 83.8 | 2,772,452 | 65.7 | 192,518 | 40.3 | 13,038,354 | 71.3 |
|           | 5     | 546,937   | 10.1 | 263,036    | 3.2  | 351,078   | 8.3  | 39,842  | 8.3  | 1,200,892  | 6.6  |
|           | 6+    | 900,053   | 16.5 | 334,911    | 4.1  | 760,010   | 18.0 | 102,454 | 21.4 | 2,097,427  | 11.5 |
|           | Total | 5,440,570 |      | 8,151,762  |      | 4,221,903 |      | 478,236 |      | 18,292,470 |      |
|           | 1     | 0         | 0.0  | 0          | 0.0  | 0         | 0.0  | 0       | 0.0  | 0          | 0.0  |
|           | 2     | 42,069    | 3.6  | 327,471    | 8.4  | 12,182    | 7.0  | 0       | 0.0  | 381,721    | 7.3  |
|           | 3     | 31,699    | 2.7  | 31,838     | 0.8  | 1,866     | 1.1  | 153     | 0.9  | 65,556     | 1.3  |
| Trap Nets | 4     | 961,183   | 82.0 | 2,644,199  | 68.2 | 101,769   | 58.3 | 4,283   | 24.1 | 3,711,434  | 70.8 |
| -         | 5     | 44,670    | 3.8  | 171,313    | 4.4  | 7,736     | 4.4  | 2,294   | 12.9 | 226,014    | 4.3  |
|           | 6+    | 92,583    | 7.9  | 703,170    | 18.1 | 51,035    | 29.2 | 11,013  | 62.1 | 857,801    | 16.4 |
|           | Total | 1,172,204 |      | 3,877,990  |      | 174,588   |      | 17,743  |      | 5,242,526  |      |
|           | 1     | 1,083     | 0.0  | 206        | 0.0  | 501       | 0.0  | 0       | 0.0  | 1,790      | 0.0  |
|           | 2     | 1,393,906 | 50.4 | 765,051    | 34.1 | 119,255   | 9.3  | 2,580   | 1.6  | 2,280,792  | 35.4 |
|           | 3     | 125,911   | 4.6  | 95,676     | 4.3  | 29,379    | 2.3  | 7,344   | 4.4  | 258,310    | 4.0  |
| Sport     | 4     | 924,733   | 33.5 | 986,617    | 44.0 | 526,937   | 41.2 | 59,536  | 35.9 | 2,497,823  | 38.7 |
|           | 5     | 81,513    | 2.9  | 77,595     | 3.5  | 70,670    | 5.5  | 25,419  | 15.3 | 255,197    | 4.0  |
|           | 6+    | 236,842   | 8.6  | 316,489    | 14.1 | 531,042   | 41.6 | 70,860  | 42.8 | 1,155,233  | 17.9 |
|           | Total | 2,763,988 |      | 2,241,634  |      | 1,277,784 |      | 165,739 |      | 6,449,145  |      |
|           | 1     | 1,083     | 0.0  | 206        | 0.0  | 501       | 0.0  | 0       | 0.0  | 1,790      | 0.0  |
|           | 2     | 1,778,006 | 19.0 | 1,556,005  | 10.9 | 230,113   | 4.1  | 113,553 | 17.2 | 3,677,677  | 12.3 |
|           | 3     | 565,216   | 6.0  | 388,404    | 2.7  | 270,931   | 4.8  | 39,946  | 6.0  | 1,264,498  | 4.2  |
| All Gear  | 4     | 5,129,859 | 54.7 | 10,460,256 | 73.3 | 3,401,159 | 59.9 | 256,337 | 38.7 | 19,247,611 | 64.2 |
|           | 5     | 673,120   | 7.2  | 511,944    | 3.6  | 429,484   | 7.6  | 67,555  | 10.2 | 1,682,103  | 5.6  |
|           | 6+    | 1,229,478 | 13.1 | 1,354,570  | 9.5  | 1,342,087 | 23.7 | 184,327 | 27.9 | 4,110,462  | 13.7 |
|           | Total | 9,375,679 |      | 14,271,386 |      | 5,674,275 |      | 661,718 |      | 29,984,141 |      |

Table 1.6. Lake Erie 2005 yellow perch harvest in numbers of fish by gear, age and management unit (Unit).

|        | Age         | 1990   | 1991   | 1992   | 1993   | 1994   | 1995   | 1996   | 1997   | 1998   | 1999   | 2000   | 2001   | 2002   | 2003    | 2004   | 2005    | 2006   |
|--------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|---------|--------|
| Unit 1 | 2           | 3.654  | 10.748 | 14.085 | 4.427  | 10.196 | 22.870 | 26.356 | 21.640 | 41.911 | 10.424 | 33.344 | 32.512 | 8.647  | 45.193  | 5.494  | 55.085  | 3.318  |
|        | 3           | 1.350  | 1.944  | 5.699  | 7.858  | 1.818  | 6.243  | 14.050 | 15.792 | 13.534 | 26.025 | 6.699  | 21.349 | 21.056 | 5.582   | 28.740 | 3.546   | 35.124 |
|        | 4           | 5.356  | 0.520  | 0.607  | 2.042  | 2.085  | 0.819  | 2.843  | 6.192  | 7.560  | 6.951  | 14.545 | 3.747  | 12.792 | 11.268  | 3.177  | 14.575  | 1.929  |
|        | 5           | 2.061  | 1.546  | 0.121  | 0.143  | 0.312  | 0.527  | 0.228  | 0.765  | 1.953  | 2.793  | 3.200  | 7.253  | 2.053  | 5.415   | 5.275  | 1.331   | 6.413  |
|        | 6+          | 1.532  | 0.673  | 0.319  | 0.074  | 0.025  | 0.082  | 0.180  | 0.105  | 0.190  | 0.507  | 1.273  | 2.008  | 4.861  | 2.555   | 3.452  | 3.002   | 1.619  |
|        | 2 and Older | 13.954 | 15.432 | 20.831 | 14.544 | 14.436 | 30.541 | 43.658 | 44.493 | 65.148 | 46.699 | 59.061 | 66.868 | 49.408 | 70.013  | 46.138 | 77.539  | 48.402 |
|        | 3 and Older | 10.299 | 4.684  | 6.746  | 10.117 | 4.240  | 7.671  | 17.302 | 22.854 | 23.238 | 36.275 | 25.717 | 34.356 | 40.761 | 24.820  | 40.644 | 22.454  | 45.084 |
| Unit 2 | 2           | 5.582  | 14.227 | 17.132 | 6.716  | 12.838 | 13.276 | 28.259 | 17.897 | 62.695 | 15.580 | 55.204 | 45.768 | 11.010 | 93.709  | 5.726  | 86.000  | 4.848  |
|        | 3           | 1.484  | 2.235  | 5.938  | 8.323  | 3.110  | 7.293  | 7.444  | 13.725 | 9.141  | 33.110 | 9.652  | 33.364 | 27.155 | 6.939   | 56.738 | 3.730   | 55.221 |
|        | 4           | 7.294  | 0.475  | 0.673  | 1.953  | 2.993  | 0.936  | 2.209  | 2.325  | 3.554  | 3.330  | 17.295 | 5.062  | 17.748 | 13.549  | 3.483  | 29.320  | 1.932  |
|        | 5           | 2.282  | 1.918  | 0.112  | 0.193  | 0.519  | 0.727  | 0.215  | 0.559  | 0.439  | 0.873  | 1.688  | 8.584  | 2.578  | 8.401   | 6.233  | 1.697   | 13.767 |
|        | 6+          | 1.591  | 0.826  | 0.494  | 0.176  | 0.087  | 0.147  | 0.203  | 0.106  | 0.078  | 0.090  | 0.413  | 1.010  | 4.884  | 3.518   | 5.541  | 5.499   | 3.430  |
|        | 2 and Older | 18.233 | 19.681 | 24.350 | 17.361 | 19.548 | 22.379 | 38.330 | 34.612 | 75.906 | 52.983 | 84.253 | 93.787 | 63.376 | 126.116 | 77.720 | 126.247 | 79.198 |
|        | 3 and Older | 12.651 | 5.454  | 7.218  | 10.645 | 6.710  | 9.103  | 10.072 | 16.715 | 13.211 | 37.403 | 29.049 | 48.020 | 52.366 | 32.407  | 71.995 | 40.247  | 74.350 |
| Unit 3 | 2           | 3.962  | 8.242  | 5.224  | 3.004  | 6.200  | 6.766  | 12.776 | 9.446  | 37.165 | 11.753 | 42.963 | 25.494 | 6.569  | 35.866  | 2.661  | 86.683  | 5.173  |
|        | 3           | 1.786  | 2.404  | 3.610  | 2.336  | 1.494  | 3.609  | 4.190  | 8.111  | 5.882  | 24.028 | 7.611  | 27.689 | 16.276 | 4.210   | 23.221 | 1.738   | 57.355 |
|        | 4           | 4.063  | 0.838  | 0.808  | 1.291  | 0.997  | 0.801  | 2.130  | 2.459  | 4.281  | 3.521  | 15.316 | 4.788  | 17.469 | 10.099  | 2.595  | 14.127  | 1.047  |
|        | 5           | 1.421  | 1.423  | 0.320  | 0.243  | 0.444  | 0.352  | 0.415  | 1.094  | 1.185  | 2.367  | 2.196  | 9.227  | 2.948  | 10.386  | 5.877  | 1.496   | 7.753  |
|        | 6+          | 4.165  | 1.697  | 0.767  | 0.345  | 0.207  | 0.252  | 0.318  | 0.371  | 0.640  | 0.927  | 2.000  | 2.495  | 7.153  | 6.030   | 9.557  | 8.841   | 5.732  |
|        | 2 and Older | 15.397 | 14.604 | 10.727 | 7.219  | 9.342  | 11.781 | 19.828 | 21.480 | 49.153 | 42.596 | 70.087 | 69.693 | 50.415 | 66.590  | 43.911 | 112.885 | 77.060 |
|        | 3 and Older | 11.434 | 6.362  | 5.503  | 4.215  | 3.142  | 5.015  | 7.052  | 12.034 | 11.988 | 30.843 | 27.124 | 44.200 | 43.846 | 30.724  | 41.250 | 26.202  | 71.887 |
| Unit 4 | 2           | 0.592  | 0.423  | 0.102  | 0.279  | 0.132  | 1.102  | 0.728  | 0.323  | 4.022  | 1.420  | 12.624 | 2.588  | 2.182  | 9.172   | 1.046  | 4.318   | 0.085  |
|        | 3           | 0.664  | 0.383  | 0.270  | 0.068  | 0.177  | 0.084  | 0.726  | 0.480  | 0.212  | 2.694  | 0.941  | 8.422  | 1.735  | 1.462   | 6.129  | 0.694   | 2.857  |
|        | 4           | 0.923  | 0.335  | 0.176  | 0.174  | 0.029  | 0.082  | 0.049  | 0.419  | 0.273  | 0.139  | 1.704  | 0.619  | 5.621  | 1.146   | 0.956  | 3.956   | 0.431  |
|        | 5           | 0.409  | 0.351  | 0.105  | 0.101  | 0.048  | 0.009  | 0.040  | 0.024  | 0.206  | 0.172  | 0.086  | 1.103  | 0.412  | 3.641   | 0.731  | 0.602   | 2.380  |
|        | 6+          | 0.957  | 0.517  | 0.265  | 0.212  | 0.085  | 0.041  | 0.023  | 0.030  | 0.026  | 0.138  | 0.185  | 0.173  | 0.843  | 0.779   | 2.742  | 2.096   | 1.560  |
|        | 2 and Older | 3.546  | 2.008  | 0.918  | 0.835  | 0.471  | 1.319  | 1.566  | 1.275  | 4.739  | 4.563  | 15.539 | 12.906 | 10.793 | 16.199  | 11.604 | 11.666  | 7.313  |
|        | 3 and Older | 2.953  | 1.586  | 0.816  | 0.556  | 0.339  | 0.216  | 0.838  | 0.953  | 0.718  | 3.142  | 2.915  | 10.318 | 8.611  | 7.027   | 10.558 | 7.348   | 7.228  |

 Table 1.7.
 Yellow perch stock size (millions of fish) in each Lake Erie management unit. The years 1990 to 2005 are estimated by ADMB catch-age analysis. The 2006 population estimates use age-2 yellow perch estimates derived from regressions of ADMB age-2 abundance values against YOY and yearling trawl index values.

 Table 1.8.
 Projection of the 2006 Lake Erie yellow perch population. Stock size estimates are derived from ADMB and age 2 estimates for 2006 are derived from regressions of ADMB age-2 abundance against YOY and yearling trawl indices. Standard errors are produced from the ADMB catch-age analysis report.

|        |       | 2       | 2005 Paran  | neters  |         |       | Rat      | e Funct | ions  |                  |       | 2006 Par | ameters    |         |                   | Stock  | Biomass |               |
|--------|-------|---------|-------------|---------|---------|-------|----------|---------|-------|------------------|-------|----------|------------|---------|-------------------|--------|---------|---------------|
|        |       | Sto     | ock Size (n | umbers) |         |       | Mortalit | y Rates |       | Survival<br>Rate | _     | Stock S  | ize (numbe | ers)    | Mean<br>Weight in | millio | ns kg   | millions lbs. |
|        | Age   | Mean    | Std. Err.   | Min.    | Max.    | (F)   | (Z)      | (A)     | (u)   | (S)              | Age   | Mean     | Min.       | Max.    | Pop. (kg)         | 2005   | 2006    | 2006          |
| Unit 1 | 2     | 55.085  | 35.589      | 19.496  | 90.674  | 0.050 | 0.450    | 0.362   | 0.040 | 0.638            | 2     | 3.318    | 2.347      | 4.289   | 0.063             | 3.379  | 0.209   | 0.461         |
|        | 3     | 3.546   | 1.675       | 1.871   | 5.221   | 0.209 | 0.609    | 0.456   | 0.157 | 0.544            | 3     | 35.124   | 12.431     | 57.816  | 0.088             | 0.287  | 3.091   | 6.815         |
|        | 4     | 14.575  | 6.149       | 8.426   | 20.724  | 0.421 | 0.821    | 0.560   | 0.287 | 0.440            | 4     | 1.929    | 1.018      | 2.840   | 0.121             | 1.933  | 0.233   | 0.515         |
|        | 5     | 1.331   | 0.565       | 0.766   | 1.896   | 0.553 | 0.953    | 0.614   | 0.357 | 0.386            | 5     | 6.413    | 3.707      | 9.118   | 0.155             | 0.196  | 0.994   | 2.192         |
|        | 6+    | 3.002   | 1.456       | 1.546   | 4.458   | 0.599 | 0.999    | 0.632   | 0.379 | 0.368            | 6+    | 1.619    | 0.865      | 2.373   | 0.212             | 0.601  | 0.343   | 0.757         |
|        | Total | 77.539  |             | 32.105  | 122.973 | 0.142 | 0.542    | 0.419   | 0.110 | 0.581            | Total | 48.402   | 20.368     | 76.436  | 0.101             | 6.396  | 4.870   | 10.739        |
|        | (3+)  | 22.454  |             | 12.609  | 32.299  | 0.413 | 0.813    | 0.556   | 0.283 | 0.444            | (3+)  | 45.084   | 18.021     | 72.147  | 0.103             | 3.017  | 4.661   | 10.278        |
| Unit 2 | 2     | 86.000  | 46.677      | 39.323  | 132.677 | 0.043 | 0.443    | 0.358   | 0.035 | 0.642            | 2     | 4.848    | 3.370      | 6.327   | 0.070             | 5.590  | 0.339   | 0.748         |
|        | 3     | 3.730   | 1.543       | 2.187   | 5.273   | 0.258 | 0.658    | 0.482   | 0.189 | 0.518            | 3     | 55.221   | 25.250     | 85.193  | 0.112             | 0.343  | 6.185   | 13.637        |
|        | 4     | 29.320  | 10.687      | 18.633  | 40.007  | 0.356 | 0.756    | 0.530   | 0.250 | 0.470            | 4     | 1.932    | 1.133      | 2.731   | 0.177             | 4.838  | 0.342   | 0.754         |
|        | 5     | 1.697   | 0.587       | 1.110   | 2.284   | 0.402 | 0.802    | 0.552   | 0.276 | 0.448            | 5     | 13.767   | 8.749      | 18.785  | 0.268             | 0.434  | 3.690   | 8.136         |
|        | 6+    | 5.499   | 1.773       | 3.726   | 7.272   | 0.323 | 0.723    | 0.515   | 0.230 | 0.485            | 6+    | 3.430    | 2.306      | 4.553   | 0.329             | 1.914  | 1.128   | 2.488         |
|        | Total | 126.247 |             | 64.980  | 187.514 | 0.129 | 0.529    | 0.411   | 0.101 | 0.589            | Total | 79.198   | 40.807     | 117.589 | 0.148             | 13.119 | 11.684  | 25.763        |
|        | (3+)  | 40.247  |             | 25.657  | 54.837  | 0.344 | 0.744    | 0.525   | 0.243 | 0.475            | (3+)  | 74.350   | 37.437     | 111.262 | 0.153             | 7.529  | 11.345  | 25.015        |
| Unit 3 | 2     | 86.683  | 49.109      | 37.574  | 135.792 | 0.013 | 0.413    | 0.338   | 0.011 | 0.662            | 2     | 5.173    | 3.230      | 7.115   | 0.062             | 4.334  | 0.321   | 0.707         |
|        | 3     | 1.738   | 0.741       | 0.997   | 2.479   | 0.107 | 0.507    | 0.398   | 0.084 | 0.602            | 3     | 57.355   | 24.862     | 89.849  | 0.116             | 0.186  | 6.653   | 14.670        |
|        | 4     | 14.127  | 5.278       | 8.849   | 19.405  | 0.200 | 0.600    | 0.451   | 0.150 | 0.549            | 4     | 1.047    | 0.601      | 1.493   | 0.177             | 2.444  | 0.185   | 0.409         |
|        | 5     | 1.496   | 0.532       | 0.964   | 2.028   | 0.236 | 0.636    | 0.471   | 0.175 | 0.529            | 5     | 7.753    | 4.857      | 10.650  | 0.253             | 0.339  | 1.962   | 4.325         |
|        | 6+    | 8.841   | 2.902       | 5.939   | 11.743  | 0.182 | 0.582    | 0.441   | 0.138 | 0.559            | 6+    | 5.732    | 3.829      | 7.635   | 0.349             | 2.988  | 2.000   | 4.411         |
|        | Total | 112.885 |             | 54.323  | 171.447 | 0.051 | 0.451    | 0.363   | 0.041 | 0.637            | Total | 77.060   | 37.377     | 116.742 | 0.144             | 10.292 | 11.121  | 24.522        |
|        | (3+)  | 26.202  |             | 16.749  | 35.655  | 0.189 | 0.589    | 0.445   | 0.143 | 0.555            | (3+)  | 71.887   | 34.147     | 109.627 | 0.150             | 5.958  | 10.800  | 23.815        |
| Unit 4 | 2     | 4.318   | 3.332       | 0.986   | 7.650   | 0.013 | 0.413    | 0.338   | 0.011 | 0.662            | 2     | 0.085    | 0.060      | 0.110   | 0.080             | 0.268  | 0.007   | 0.015         |
|        | 3     | 0.694   | 0.440       | 0.254   | 1.134   | 0.075 |          | 0.378   |       | 0.622            | 3     | 2.857    | 0.652      | 5.062   | 0.153             | 0.106  | 0.437   | 0.964         |
|        | 4     | 3.956   | 2.306       | 1.650   | 6.262   | 0.108 |          | 0.398   |       | 0.602            | 4     | 0.431    | 0.158      | 0.705   | 0.214             | 0.827  | 0.092   | 0.204         |
|        | 5     | 0.602   | 0.339       | 0.263   | 0.941   | 0.177 | 0.577    | 0.438   | 0.134 | 0.562            | 5     | 2.380    | 0.993      | 3.768   | 0.262             | 0.164  | 0.624   | 1.375         |
|        | 6+    | 2.096   | 1.176       | 0.920   | 3.272   | 0.140 | 0.540    | 0.417   | 0.108 | 0.583            | 6+    | 1.560    | 0.684      | 2.435   | 0.335             | 0.717  | 0.523   | 1.152         |
|        | Total | 11.666  |             | 4.073   | 19.259  | 0.079 | 0.479    | 0.380   | 0.063 | 0.620            | Total | 7.313    | 2.546      | 12.080  | 0.230             | 2.081  | 1.682   | 3.710         |
|        | (3+)  | 7.348   |             | 3.087   | 11.609  | 0.119 | 0.519    | 0.405   | 0.093 | 0.595            | (3+)  | 7.228    | 2.487      | 11.970  | 0.232             | 1.814  | 1.676   | 3.695         |

Table 2.1.1. Management Unit 1 yellow perch biological references from simulations and projected population size in 2007 for a range of fishing rates "F". Biological reference points include mean spawner biomass as a fraction of an unfished population, mean survival of age 2+ and 3+ fish, and the probability of attaining low population levels observed in 1993-4 for ages 2+ (14.5 million) and 3+ (4.2 million). The harvest in the "Harvest 2006" column, is based on fishing rates in the "F" column and 2006 abundance estimates at the bottom of the page. S/R simulations based on ADMB abundance estimates from 1982-2004 were used to determine F<sub>0.1</sub>. F<sub>2005</sub> was the fishing rate used for TAC in 2004 and 2005. Refer to Table 2.2.1 for summary of F<sub>2005</sub> fishing rates and 2006 recommended harvest by management unit.

|                                       |             | Simulation  |                    |                    | Projections at Different Fishing Rates |                                          |                                  |                                  |                               |  |  |  |
|---------------------------------------|-------------|-------------|--------------------|--------------------|----------------------------------------|------------------------------------------|----------------------------------|----------------------------------|-------------------------------|--|--|--|
| % Spawner<br>Biomass<br>(of Unfished) | Survival 2+ | Survival 3+ | Prob %.<br>1993 2+ | Prob. %<br>1994 3+ | F                                      | Harvest<br>(Ibs x 10 <sup>6</sup> ) 2006 | Population 2+<br>(millions) 2007 | Population 3+<br>(millions) 2007 | Harvest Strategy<br>Reference |  |  |  |
| 100                                   | 67%         | 67%         | 0                  | 0                  | 0.000                                  | 0.000                                    | 47.385                           | 32.445                           |                               |  |  |  |
| 98                                    | 67%         | 67%         | 0                  | 0                  | 0.010                                  | 0.050                                    | 47.239                           | 32.299                           |                               |  |  |  |
| 93                                    | 66%         | 65%         | 0                  | 0                  | 0.050                                  | 0.250                                    | 46.663                           | 31.723                           |                               |  |  |  |
| 87                                    | 64%         | 63%         | 0.2                | 0                  | 0.100                                  | 0.493                                    | 45.960                           | 31.020                           |                               |  |  |  |
| 81                                    | 63%         | 61%         | 0.5                | 0                  | 0.150                                  | 0.731                                    | 45.275                           | 30.335                           |                               |  |  |  |
| 76                                    | 62%         | 59%         | 1.0                | 0                  | 0.200                                  | 0.962                                    | 44.607                           | 29.667                           |                               |  |  |  |
| 72                                    | 61%         | 58%         | 1.3                | 0                  | 0.250                                  | 1.188                                    | 43.956                           | 29.017                           |                               |  |  |  |
| 68                                    | 60%         | 56%         | 2.4                | 0                  | 0.300                                  | 1.408                                    | 43.322                           | 28.382                           |                               |  |  |  |
| 65                                    | 59%         | 54%         | 3.7                | 0.0                | 0.350                                  | 1.623                                    | 42.704                           | 27.764                           |                               |  |  |  |
| 62                                    | 58%         | 53%         | 5.0                | 0.1                | 0.400                                  | 1.832                                    | 42.101                           | 27.161                           |                               |  |  |  |
| 59                                    | 57%         | 51%         | 6.1                | 0.3                | 0.450                                  | 2.037                                    | 41.514                           | 26.574                           |                               |  |  |  |
| 57                                    | 56%         | 50%         | 8.3                | 0.4                | 0.500                                  | 2.236                                    | 40.941                           | 26.001                           |                               |  |  |  |
| 54                                    | 55%         | 49%         | 10.2               | 0.7                | 0.550                                  | 2.430                                    | 40.382                           | 25.442                           |                               |  |  |  |
| 52                                    | 54%         | 48%         | 11.7               | 0.8                | 0.600                                  | 2.620                                    | 39.837                           | 24.898                           |                               |  |  |  |
| 50                                    | 54%         | 46%         | 14.1               | 1.1                | 0.646                                  | 2.790                                    | 39.348                           | 24.408                           | F <sub>0.1</sub>              |  |  |  |
| 50                                    | 54%         | 46%         | 14.7               | 1.1                | 0.650                                  | 2.805                                    | 39.306                           | 24.366                           |                               |  |  |  |
| 48                                    | 53%         | 45%         | 16.9               | 1.8                | 0.700                                  | 2.986                                    | 38.788                           | 23.848                           |                               |  |  |  |
| 48                                    | 53%         | 45%         | 17.8               | 2.0                | 0.720                                  | 3.057                                    | 38.584                           | 23.645                           | F <sub>2005</sub>             |  |  |  |
| 47                                    | 52%         | 44%         | 19.7               | 2.2                | 0.750                                  | 3.162                                    | 38.283                           | 23.343                           |                               |  |  |  |
| 45                                    | 52%         | 43%         | 21.6               | 3.1                | 0.800                                  | 3.334                                    | 37.790                           | 22.850                           |                               |  |  |  |
| 44                                    | 51%         | 42%         | 24.0               | 4.2                | 0.850                                  | 3.502                                    | 37.309                           | 22.369                           |                               |  |  |  |
| 42                                    | 51%         | 41%         | 26.6               | 5.8                | 0.900                                  | 3.666                                    | 36.839                           | 21.900                           |                               |  |  |  |
| 41                                    | 50%         | 40%         | 28.2               | 7.6                | 0.950                                  | 3.826                                    | 36.382                           | 21.442                           |                               |  |  |  |
| 40                                    | 50%         | 39%         | 30.5               | 8.3                | 1.000                                  | 3.983                                    | 35.935                           | 20.995                           |                               |  |  |  |
| 38                                    | 48%         | 37%         | 35.1               | 11.5               | 1.100                                  | 4.285                                    | 35.073                           | 20.134                           |                               |  |  |  |
| 36                                    | 48%         | 36%         | 38.7               | 15.9               | 1.200                                  | 4.573                                    | 34.253                           | 19.313                           |                               |  |  |  |
| 34                                    | 47%         | 34%         | 42.1               | 20.1               | 1.300                                  | 4.848                                    | 33.471                           | 18.532                           |                               |  |  |  |
| 33                                    | 46%         | 33%         | 44.6               | 23.9               | 1.400                                  | 5.110                                    | 32.726                           | 17.786                           |                               |  |  |  |
| 32                                    | 45%         | 31%         | 47.4               | 29.5               | 1.500                                  | 5.361                                    | 32.016                           | 17.076                           |                               |  |  |  |

| Param | eters in Compu | utations    |      | 2006 Stock Size | e (numbers x 10 <sup>6</sup> ) | )      | 2007 Recruitment |
|-------|----------------|-------------|------|-----------------|--------------------------------|--------|------------------|
| Age   | s(age)         | Weight (kg) | Age  | Mean            | Min.                           | Max.   | Millions Age 2s  |
| 2     | 0.084          | 0.093       | 2    | 3.318           | 2.347                          | 4.289  | 14.940           |
| 3     | 0.397          | 0.114       | 3    | 35.124          | 12.431                         | 57.816 |                  |
| 4     | 0.693          | 0.131       | 4    | 1.929           | 1.018                          | 2.840  |                  |
| 5     | 0.768          | 0.152       | 5    | 6.413           | 3.707                          | 9.118  |                  |
| 6     | 0.827          | 0.185       | 6+   | 1.619           | 0.865                          | 2.373  |                  |
|       |                |             | (2+) | 48.402          | 20.368                         | 76.436 |                  |
|       |                |             | (3+) | 45.084          | 18.021                         | 72.147 |                  |

Table 2.1.2. Management Unit 2 yellow perch biological references from simulations and projected population size in 2007 for a range of fishing rates "F". Biological reference points include mean spawner biomass as a fraction of an unfished population, mean survival of age 2+ and 3+ fish, and the probability of attaining low population levels observed in 1993-4 for ages 2+ (17.4 million) and 3+ (6.7 million). The harvest in the "Harvest 2006" column, is based on fishing rates in the "F" column and 2006 abundance estimates at the bottom of the page. S/R simulations based on ADMB abundance estimates from 1982-2004 were used to determine F<sub>0.1</sub>. F<sub>2005</sub> was the fishing rate used for TAC in 2004 and 2005. Refer to Table 2.2.1 for summary of F<sub>2005</sub> fishing rates and 2006 recommended harvest by management unit.

| Simulation                            |             |             |                    | Projections at Different Fishing Rates |       |                                          |                                  |                                  |                               |
|---------------------------------------|-------------|-------------|--------------------|----------------------------------------|-------|------------------------------------------|----------------------------------|----------------------------------|-------------------------------|
| % Spawner<br>Biomass<br>(of Unfished) | Survival 2+ | Survival 3+ | Prob %.<br>1993 2+ | Prob. %<br>1994 3+                     | F     | Harvest<br>(lbs x 10 <sup>6</sup> ) 2006 | Population 2+<br>(millions) 2007 | Population 3+<br>(millions) 2007 | Harvest Strategy<br>Reference |
| 100                                   | 67%         | 67%         | 0                  | 0                                      | 0.000 | 0.000                                    | 81.808                           | 53.1                             |                               |
| 99                                    | 67%         | 67%         | 0.1                | 0                                      | 0.010 | 0.130                                    | 81.477                           | 52.8                             |                               |
| 93                                    | 65%         | 65%         | 0.1                | 0                                      | 0.050 | 0.642                                    | 80.173                           | 51.5                             |                               |
| 87                                    | 64%         | 62%         | 0.4                | 0                                      | 0.100 | 1.263                                    | 78.592                           | 49.9                             |                               |
| 82                                    | 62%         | 60%         | 0.7                | 0                                      | 0.150 | 1.864                                    | 77.064                           | 48.3                             |                               |
| 77                                    | 61%         | 58%         | 1.5                | 0                                      | 0.200 | 2.447                                    | 75.586                           | 46.9                             |                               |
| 73                                    | 59%         | 56%         | 2.8                | 0                                      | 0.250 | 3.011                                    | 74.158                           | 45.4                             |                               |
| 69                                    | 58%         | 54%         | 4.1                | 0                                      | 0.300 | 3.557                                    | 72.776                           | 44.1                             |                               |
| 65                                    | 57%         | 52%         | 6.7                | 0.5                                    | 0.350 | 4.086                                    | 71.440                           | 42.7                             |                               |
| 62                                    | 56%         | 50%         | 9.4                | 0.9                                    | 0.400 | 4.599                                    | 70.149                           | 41.4                             |                               |
| 59                                    | 55%         | 48%         | 11.5               | 1.7                                    | 0.450 | 5.095                                    | 68.900                           | 40.2                             |                               |
| 56                                    | 54%         | 47%         | 14.4               | 2.7                                    | 0.500 | 5.576                                    | 67.692                           | 39.0                             |                               |
| 53                                    | 53%         | 45%         | 17.6               | 4.1                                    | 0.550 | 6.042                                    | 66.523                           | 37.8                             |                               |
| 51                                    | 52%         | 44%         | 20.5               | 6.1                                    | 0.600 | 6.494                                    | 65.393                           | 36.7                             |                               |
| 49                                    | 51%         | 42%         | 22.7               | 8.9                                    | 0.650 | 6.931                                    | 64.300                           | 35.6                             |                               |
| 48                                    | 51%         | 42%         | 23.2               | 9.5                                    | 0.661 | 7.026                                    | 64.065                           | 35.3                             | F <sub>2005</sub>             |
| 47                                    | 51%         | 41%         | 24.4               | 10.7                                   | 0.686 | 7.238                                    | 63.535                           | 34.8                             | F <sub>0.1</sub>              |
| 47                                    | 51%         | 41%         | 25.7               | 11.2                                   | 0.700 | 7.355                                    | 63.243                           | 34.5                             |                               |
| 45                                    | 50%         | 40%         | 28.0               | 15.1                                   | 0.750 | 7.766                                    | 62.220                           | 33.5                             |                               |
| 43                                    | 49%         | 38%         | 31.2               | 19.2                                   | 0.800 | 8.165                                    | 61.231                           | 32.5                             |                               |
| 42                                    | 49%         | 37%         | 34.1               | 23.5                                   | 0.850 | 8.551                                    | 60.274                           | 31.6                             |                               |
| 40                                    | 48%         | 36%         | 37.2               | 27.4                                   | 0.900 | 8.925                                    | 59.348                           | 30.6                             |                               |
| 39                                    | 47%         | 35%         | 40.2               | 32.5                                   | 0.950 | 9.288                                    | 58.452                           | 29.7                             |                               |
| 37                                    | 47%         | 34%         | 42.4               | 36.2                                   | 1.000 | 9.640                                    | 57.585                           | 28.9                             |                               |
| 35                                    | 46%         | 32%         | 46.2               | 44.4                                   | 1.100 | 10.312                                   | 55.935                           | 27.2                             |                               |
| 33                                    | 45%         | 30%         | 51.4               | 52.1                                   | 1.200 | 10.945                                   | 54.389                           | 25.7                             |                               |
| 31                                    | 44%         | 28%         | 55.1               | 59.0                                   | 1.300 | 11.540                                   | 52.941                           | 24.2                             |                               |
| 29                                    | 43%         | 26%         | 58.5               | 64.8                                   | 1.400 | 12.100                                   | 51.585                           | 22.9                             |                               |
| 27                                    | 42%         | 25%         | 62.0               | 71.1                                   | 1.500 | 12.628                                   | 50.314                           | 21.6                             |                               |

| Parameters in Computations |        |             |      | 2006 Stock Siz | 2007 Recruitment |         |                 |
|----------------------------|--------|-------------|------|----------------|------------------|---------|-----------------|
| Age                        | s(age) | Weight (kg) | Age  | Mean           | Min.             | Max.    | Millions Age 2s |
| 2                          | 0.088  | 0.114       | 2    | 4.848          | 3.370            | 6.327   | 28.720          |
| 3                          | 0.593  | 0.131       | 3    | 55.221         | 25.250           | 85.193  |                 |
| 4                          | 0.812  | 0.145       | 4    | 1.932          | 1.133            | 2.731   |                 |
| 5                          | 0.882  | 0.168       | 5    | 13.767         | 8.749            | 18.785  |                 |
| 6                          | 0.805  | 0.208       | 6+   | 3.430          | 2.306            | 4.553   |                 |
|                            |        |             | (2+) | 79.198         | 40.807           | 117.589 |                 |
|                            |        |             | (3+) | 74.350         | 37.437           | 111.262 |                 |

Table 2.1.3. Management Unit 3 yellow perch biological references from simulations and projected population size in 2007 for a range of fishing rates "F". Biological reference points include mean spawner biomass as a fraction of an unfished population, mean survival of age 2+ and 3+ fish, and the probability of attaining low population levels observed in 1993-4 for ages 2+ (7.2 million) and 3+ (3.1 million). The harvest in the "Harvest 2006" column, is based on fishing rates in the "F" column and 2006 abundance estimates at the bottom of the page. S/R simulations based on ADMB abundance estimates from 1982-2004 were used to determine F<sub>0.1</sub>. F<sub>2005</sub> was the fishing rate used for TAC in 2004 and 2005. Refer to Table 2.1 for summary of F<sub>2005</sub> fishing rates and 2006 recommended harvest by management unit.

| Simulation                            |             |             |                    | Projections at Different Fishing Rates |       |                                             |                                  |                                  |                               |
|---------------------------------------|-------------|-------------|--------------------|----------------------------------------|-------|---------------------------------------------|----------------------------------|----------------------------------|-------------------------------|
| % Spawner<br>Biomass<br>(of Unfished) | Survival 2+ | Survival 3+ | Prob %.<br>1993 2+ | Prob. %<br>1994 3+                     | F     | Harvest<br>(Ibs x 10 <sup>6</sup> )<br>2006 | Population 2+<br>(millions) 2007 | Population 3+<br>(millions) 2007 | Harvest Strategy<br>Reference |
| 100                                   | 67%         | 67%         | 0                  | 0                                      | 0.000 | 0.000                                       | 64.063                           | 51.655                           |                               |
| 98                                    | 67%         | 67%         | 0                  | 0                                      | 0.010 | 0.102                                       | 63.834                           | 51.426                           |                               |
| 92                                    | 65%         | 65%         | 0                  | 0                                      | 0.050 | 0.506                                       | 62.930                           | 50.522                           |                               |
| 84                                    | 64%         | 63%         | 0                  | 0                                      | 0.100 | 1.000                                       | 61.827                           | 49.418                           |                               |
| 78                                    | 63%         | 61%         | 0                  | 0                                      | 0.150 | 1.480                                       | 60.751                           | 48.342                           |                               |
| 73                                    | 61%         | 59%         | 0                  | 0                                      | 0.200 | 1.948                                       | 59.703                           | 47.294                           |                               |
| 68                                    | 60%         | 57%         | 0                  | 0                                      | 0.250 | 2.404                                       | 58.681                           | 46.272                           |                               |
| 63                                    | 59%         | 56%         | 0.5                | 0                                      | 0.300 | 2.849                                       | 57.685                           | 45.277                           |                               |
| 60                                    | 58%         | 54%         | 0.7                | 0                                      | 0.350 | 3.282                                       | 56.714                           | 44.306                           |                               |
| 56                                    | 57%         | 52%         | 1.1                | 0                                      | 0.400 | 3.704                                       | 55.768                           | 43.359                           |                               |
| 53                                    | 56%         | 51%         | 1.8                | 0                                      | 0.450 | 4.115                                       | 54.845                           | 42.436                           |                               |
| 50                                    | 55%         | 49%         | 2.5                | 0.5                                    | 0.500 | 4.516                                       | 53.945                           | 41.536                           |                               |
| 48                                    | 54%         | 48%         | 3.2                | 0.8                                    | 0.550 | 4.907                                       | 53.067                           | 40.659                           |                               |
| 45                                    | 54%         | 47%         | 4.0                | 1.1                                    | 0.600 | 5.289                                       | 52.211                           | 39.803                           |                               |
| 43                                    | 53%         | 46%         | 4.6                | 1.9                                    | 0.648 | 5.646                                       | 51.410                           | 39.001                           | F <sub>0.1</sub>              |
| 43                                    | 53%         | 46%         | 4.6                | 1.9                                    | 0.650 | 5.660                                       | 51.377                           | 38.968                           |                               |
| 41                                    | 52%         | 44%         | 6.1                | 2.7                                    | 0.700 | 6.023                                       | 50.562                           | 38.154                           |                               |
| 41                                    | 52%         | 44%         | 6.3                | 2.7                                    | 0.703 | 6.045                                       | 50.514                           | 38.105                           | F <sub>2005</sub>             |
| 39                                    | 51%         | 43%         | 7.7                | 3.3                                    | 0.750 | 6.377                                       | 49.768                           | 37.359                           |                               |
| 38                                    | 51%         | 42%         | 9.3                | 4.9                                    | 0.800 | 6.722                                       | 48.993                           | 36.584                           |                               |
| 36                                    | 50%         | 41%         | 11.3               | 6.5                                    | 0.850 | 7.059                                       | 48.237                           | 35.828                           |                               |
| 35                                    | 50%         | 40%         | 12.6               | 7.8                                    | 0.900 | 7.387                                       | 47.499                           | 35.090                           |                               |
| 34                                    | 49%         | 39%         | 14.2               | 10.0                                   | 0.950 | 7.708                                       | 46.779                           | 34.370                           |                               |
| 32                                    | 49%         | 38%         | 15.6               | 11.6                                   | 1.000 | 8.021                                       | 46.076                           | 33.667                           |                               |
| 30                                    | 48%         | 36%         | 18.5               | 16.8                                   | 1.100 | 8.624                                       | 44.720                           | 32.312                           |                               |
| 28                                    | 47%         | 35%         | 21.6               | 22.7                                   | 1.200 | 9.200                                       | 43.428                           | 31.020                           |                               |
| 23                                    | 46%         | 33%         | 24.8               | 28.5                                   | 1.300 | 9.749                                       | 42.197                           | 29.788                           |                               |
| 25                                    | 45%         | 32%         | 28.6               | 35.5                                   | 1.400 | 10.272                                      | 41.023                           | 28.614                           |                               |
| 24                                    | 44%         | 30%         | 33.6               | 42.3                                   | 1.500 | 10.772                                      | 39.903                           | 27.494                           |                               |

| Param | Parameters in Computations |             |      | 2006 Stock S | 2007 Recruitment |         |                 |
|-------|----------------------------|-------------|------|--------------|------------------|---------|-----------------|
| Age   | s(age)                     | Weight (kg) | Age  | Mean         | Min.             | Max.    | Millions Age 2s |
| 2     | 0.075                      | 0.111       | 2    | 5.173        | 3.230            | 7.115   | 12.409          |
| 3     | 0.390                      | 0.136       | 3    | 57.355       | 24.862           | 89.849  |                 |
| 4     | 0.760                      | 0.168       | 4    | 1.047        | 0.601            | 1.493   |                 |
| 5     | 0.826                      | 0.205       | 5    | 7.753        | 4.857            | 10.650  |                 |
| 6     | 0.744                      | 0.261       | 6+   | 5.732        | 3.829            | 7.635   |                 |
|       |                            |             | (2+) | 77.060       | 37.377           | 116.742 |                 |
|       |                            |             | (3+) | 71.887       | 34.147           | 109.627 |                 |

Table 2.2.1.Lake Erie yellow perch fishing rate and proposed Total Allowable Catch (TAC; in millions of pounds) in 2006<br/>according to harvest strategies presented. The F2005 strategy is based on the stock recruitment simulation<br/>model produced in 2004 (using ADMB abundance estimates from 1975-2003) applied in 2005. The proposed<br/>TAC for MU 4 is based on the target fishing rate associated with the TAC in 2005.

| MU    | Fishing Rate | Harvest (millions lbs) | Yield Methods     |
|-------|--------------|------------------------|-------------------|
| 1     | 0.720        | 3.057                  | F <sub>2005</sub> |
| 2     | 0.661        | 7.026                  | F <sub>2005</sub> |
| 3     | 0.703        | 6.045                  | F <sub>2005</sub> |
| 4     | 0.230        | 0.352                  | F <sub>2005</sub> |
| Total |              | 16.480                 |                   |

\* Note: F=0.230 is the targeted fishing rate that produced the TAC of 309,000 lbs in 2005.

## Lake Erie Yellow Perch Management Units (MUs)



**Figure 1.1**. Yellow Perch management units (MUs) of Lake Erie; for illustrative purposes only; not to be used for quota determination or border delineation.



Figure 1.2. Lake Erie yellow perch harvest by management unit and gear type.



**Figure 1.3**. Lake Erie yellow perch effort by management unit and gear type. Note: gill net effort is targeted (mesh sizes < 3").



**Figure 1.4**. Lake Erie yellow perch catch per unit effort (CPUE) by management unit and gear type. Note: gill net effort is targeted (mesh sizes < 3").



















Figure 1.9. Yellow perch length-at-age from 1990-2005 fall interagency experimental samples for ages 0-4 by management unit.



**Figure 1.10.** Lake Erie yellow perch population estimates by management unit for age 2 (dark bars) and ages 3+ (light bars). Estimates for 2006 are from ADMB and parametric regressions for age 2 from survey gears.



**Figure 1.11**. Lake Erie yellow perch biomass estimates by management unit for age 2 (dark bars) and ages 3+ (light bars). Estimates for 2006 are from ADMB and parametric regressions for age 2 from survey gears.



Figure 1.12. Lake Erie yellow perch survival rates by management unit for ages 2+ (dashed line) and ages 3+ (solid line). Estimates are derived from ADMB.



**Figure 1.13.** Lake Erie yellow perch exploitation rates by management unit for ages 2+ (dashed line) and ages 3+ (solid line). Estimates are derived from ADMB.

| MU | Data Source                                | λ   | Relative Numbe<br>of Terms |
|----|--------------------------------------------|-----|----------------------------|
|    |                                            |     |                            |
| 1  | Commercial Gill Net Effort                 | 0.3 | 1                          |
|    | Sport Effort                               | 0.4 | 1                          |
|    | Commercial Trap Net Effort                 | 1.0 | 1                          |
|    | Commercial Gill Net Harvest                | 1.0 | 5                          |
|    | Sport Harvest                              | 0.9 | 5                          |
|    | Commercial Trap Net Harvest                | 0.5 | 5                          |
|    | Trawl Survey Catch Rates                   | 0.4 | 3                          |
|    | Partnership Gill Net Index Catch Rates     | 1.0 | 5                          |
| 2  | Commercial Gill Net Effort                 | 0.3 | 1                          |
|    | Sport Effort                               | 1.0 | 1                          |
|    | Commercial Trap Net Effort                 | 0.8 | 1                          |
|    | Commercial Gill Net Harvest                | 1.0 | 5                          |
|    | Sport Harvest                              | 0.6 | 5                          |
|    | Commercial Trap Net Harvest                | 0.4 | 5                          |
|    | Trawl Survey Catch Rates                   | 1.0 | 4                          |
|    | Partnership Gill Net Index Catch Rates     | 1.0 | 5                          |
| 3  | Commercial Gill Net Effort                 | 0.3 | 1                          |
|    | Sport Effort                               | 1.0 | 1                          |
|    | Commercial Trap Net Effort                 | 0.6 | 1                          |
|    | Commercial Gill Net Harvest                | 0.6 | 5                          |
|    | Sport Harvest                              | 1.0 | 5                          |
|    | Commercial Trap Net Harvest                | 0.4 | 5                          |
|    | Trawl Survey Catch Rates                   | 0.9 | 4                          |
|    | Partnership Gill Net Index Catch Rates     | 1.0 | 5                          |
| 4  | Commercial Gill Net Effort                 | 0.3 | 1                          |
|    | Sport Effort                               | 1.0 | 1                          |
|    | Commercial Trap Net Effort                 | 0.6 | 1                          |
|    | Commercial Gill Net Harvest                | 1.0 | 5                          |
|    | Sport Harvest                              | 1.0 | 5                          |
|    | Commercial Trap Net Harvest                | 0.8 | 5                          |
|    | NY Gill Net Survey Catch Rates             | 0.5 | 5                          |
|    | ONT Partnership Gill Net Index Catch Rates | 1.0 | 5                          |

## Appendix Table 1. Lambda ( $\lambda$ ) values and relative number of terms associated with catch-age analysis data sources by management unit.

Appendix Table 2. Agency trawl regression indices found statistically significant for projecting estimates of age-2 yellow perch recruiting in 2006 by management unit.

| Index                                                                                                               | R-SQUARE                                                                                                                                     | Slope                                                                                                                        | Index Value                                                                                                          | Age-2 estimate                                                                                                                              | SE of slope                                                                                                               | Lower Age 2 CI.                                                                                                                              | Upper Age 2 Cl                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| BOHF20A                                                                                                             | 0.8825                                                                                                                                       | 0.14870                                                                                                                      | 23.7                                                                                                                 | 3.524                                                                                                                                       | 0.01566                                                                                                                   | 2.782                                                                                                                                        | 4.26                                                                                                                               |
| BOHF21A                                                                                                             | 0.7955                                                                                                                                       | 0.16900                                                                                                                      | 50.2                                                                                                                 | 8.484                                                                                                                                       | 0.02377                                                                                                                   | 6.097                                                                                                                                        | 10.87                                                                                                                              |
| BOHS20G                                                                                                             | 0.6803                                                                                                                                       | 1.01767                                                                                                                      | 4.2                                                                                                                  | 4.274                                                                                                                                       | 0.20141                                                                                                                   | 2.582                                                                                                                                        | 5.96                                                                                                                               |
| OHF10A                                                                                                              | 0.6280                                                                                                                                       | 0.08489                                                                                                                      | 11.8                                                                                                                 | 1.002                                                                                                                                       | 0.01393                                                                                                                   | 0.673                                                                                                                                        | 1.33                                                                                                                               |
| OHF11G                                                                                                              | 0.8276                                                                                                                                       | 1.21610                                                                                                                      | 0.6                                                                                                                  | 0.730                                                                                                                                       | 0.16022                                                                                                                   | 0.537                                                                                                                                        | 0.92                                                                                                                               |
| ONTS10G                                                                                                             | 0.7418                                                                                                                                       | 0.12680                                                                                                                      | 29.1                                                                                                                 | 3.690                                                                                                                                       | 0.01673                                                                                                                   | 2.716                                                                                                                                        | 4.66                                                                                                                               |
| USF11A                                                                                                              | 0.6672                                                                                                                                       | 0.80176                                                                                                                      | 1.9                                                                                                                  | 1.523                                                                                                                                       | 0.12662                                                                                                                   | 1.042                                                                                                                                        | 2.00                                                                                                                               |
|                                                                                                                     |                                                                                                                                              |                                                                                                                              | mean                                                                                                                 | 3.318                                                                                                                                       |                                                                                                                           | 2.347                                                                                                                                        | 4.289                                                                                                                              |
| inagement l                                                                                                         | Jnit 2                                                                                                                                       |                                                                                                                              |                                                                                                                      |                                                                                                                                             |                                                                                                                           |                                                                                                                                              |                                                                                                                                    |
| Index                                                                                                               | R-SQUARE                                                                                                                                     | Slope                                                                                                                        | Index Value                                                                                                          | Age-2 estimate                                                                                                                              | SE of slope                                                                                                               | Lower Age 2 CI.                                                                                                                              | Upper Age 2 CI                                                                                                                     |
| BOHF20A                                                                                                             | 0.9323                                                                                                                                       | 0.23914                                                                                                                      | 23.7                                                                                                                 | 5.668                                                                                                                                       | 0.01860                                                                                                                   | 4.786                                                                                                                                        | 6.54                                                                                                                               |
| BOHF21A                                                                                                             | 0.7152                                                                                                                                       | 0.25024                                                                                                                      | 50.2                                                                                                                 | 12.562                                                                                                                                      | 0.04380                                                                                                                   | 8.165                                                                                                                                        | 16.96                                                                                                                              |
| BOHS20G                                                                                                             | 0.7656                                                                                                                                       | 1.68925                                                                                                                      | 4.2                                                                                                                  | 7.095                                                                                                                                       | 0.26984                                                                                                                   | 4.828                                                                                                                                        | 9.36                                                                                                                               |
| OHF10A                                                                                                              | 0.6230                                                                                                                                       | 0.10869                                                                                                                      | 11.8                                                                                                                 | 1.283                                                                                                                                       | 0.01827                                                                                                                   | 0.851                                                                                                                                        | 1.71                                                                                                                               |
| OHF11G                                                                                                              | 0.8508                                                                                                                                       | 1.92934                                                                                                                      | 0.6                                                                                                                  | 1.158                                                                                                                                       | 0.23321                                                                                                                   | 0.878                                                                                                                                        | 1.43                                                                                                                               |
| OHF30G                                                                                                              | 0.6923                                                                                                                                       | 1.26946                                                                                                                      | 1.6                                                                                                                  | 2.031                                                                                                                                       | 0.24429                                                                                                                   | 1.249                                                                                                                                        | 2.81                                                                                                                               |
| OHS30G                                                                                                              | 0.7394                                                                                                                                       | 1.76052                                                                                                                      | 2.6                                                                                                                  | 4.577                                                                                                                                       | 0.31516                                                                                                                   | 2.939                                                                                                                                        | 6.21                                                                                                                               |
| ONTS10G                                                                                                             | 0.7468                                                                                                                                       | 0.15167                                                                                                                      | 29.1                                                                                                                 | 4.414                                                                                                                                       | 0.01975                                                                                                                   | 3.264                                                                                                                                        | 5.56                                                                                                                               |
| 0113100                                                                                                             | 017 100                                                                                                                                      |                                                                                                                              |                                                                                                                      |                                                                                                                                             |                                                                                                                           |                                                                                                                                              |                                                                                                                                    |
| 0113100                                                                                                             | 011100                                                                                                                                       |                                                                                                                              | mean                                                                                                                 | 4.848                                                                                                                                       |                                                                                                                           | 3.370                                                                                                                                        | 6.327                                                                                                                              |
| inagement l                                                                                                         | Jnit 3                                                                                                                                       |                                                                                                                              |                                                                                                                      |                                                                                                                                             | SE of slope                                                                                                               |                                                                                                                                              |                                                                                                                                    |
| Inagement l                                                                                                         | Jnit 3<br>R-SQUARE                                                                                                                           | Slope                                                                                                                        | Index Value                                                                                                          | Age-2 estimate                                                                                                                              | SE of slope                                                                                                               | Lower Age 2 CI.                                                                                                                              | Upper Age 2 CI                                                                                                                     |
| Inagement l<br>Index<br>BOHF21A                                                                                     | Jnit 3<br>R-SQUARE<br>0.7046                                                                                                                 | Slope<br>0.13283                                                                                                             | Index Value<br>50.2                                                                                                  | Age-2 estimate<br>6.668                                                                                                                     | 0.02386                                                                                                                   | Lower Age 2 CI.<br>4.273                                                                                                                     | Upper Age 2 CI<br>9.06                                                                                                             |
| Inagement U<br>Index<br>BOHF21A<br>OHF30G                                                                           | Jnit 3<br>R-SQUARE<br>0.7046<br>0.6989                                                                                                       | Slope<br>0.13283<br>0.68153                                                                                                  | Index Value<br>50.2<br>1.6                                                                                           | Age-2 estimate<br>6.668<br>1.090                                                                                                            | 0.02386<br>0.12914                                                                                                        | Lower Age 2 CI.<br>4.273<br>0.677                                                                                                            | Upper Age 2 CI<br>9.06-<br>1.50-                                                                                                   |
| Index<br>Index<br>BOHF21A<br>OHF30G<br>OHS20G                                                                       | <b>Jnit 3</b><br><u>R-SQUARE</u><br>0.7046<br>0.6989<br>0.7154                                                                               | Slope<br>0.13283<br>0.68153<br>0.82098                                                                                       | Index Value<br>50.2<br>1.6<br>3.5                                                                                    | Age-2 estimate<br>6.668<br>1.090<br>2.873                                                                                                   | 0.02386<br>0.12914<br>0.14947                                                                                             | Lower Age 2 CI.<br>4.273<br>0.677<br>1.827                                                                                                   | Upper Age 2 CI<br>9.06-<br>1.50-<br>3.924                                                                                          |
| Index<br>Index<br>BOHF21A<br>OHF30G<br>OHS20G<br>OHS31G                                                             | <b>Jnit 3</b><br><u>R-SQUARE</u><br>0.7046<br>0.6989<br>0.7154<br>0.6485                                                                     | Slope<br>0.13283<br>0.68153<br>0.82098<br>0.59883                                                                            | Index Value<br>50.2<br>1.6<br>3.5<br>26.1                                                                            | Age-2 estimate<br>6.668<br>1.090<br>2.873<br>15.629                                                                                         | 0.02386<br>0.12914<br>0.14947<br>0.12726                                                                                  | Lower Age 2 CI.<br>4.273<br>0.677<br>1.827<br>8.986                                                                                          | Upper Age 2 CI<br>9.064<br>1.504<br>3.920<br>22.272                                                                                |
| Index<br>Index<br>BOHF21A<br>OHF30G<br>OHS20G<br>OHS31G<br>NYF41A                                                   | <b>Jnit 3</b><br><u>R-SQUARE</u><br>0.7046<br>0.6989<br>0.7154<br>0.6485<br>0.7076                                                           | Slope<br>0.13283<br>0.68153<br>0.82098<br>0.59883<br>0.74635                                                                 | Index Value<br>50.2<br>1.6<br>3.5<br>26.1<br>11.1                                                                    | Age-2 estimate<br>6.668<br>1.090<br>2.873<br>15.629<br>8.284                                                                                | 0.02386<br>0.12914<br>0.14947<br>0.12726<br>0.14467                                                                       | Lower Age 2 Cl.<br>4.273<br>0.677<br>1.827<br>8.986<br>5.073                                                                                 | Upper Age 2 CI<br>9.064<br>1.504<br>3.922<br>22.27<br>11.490                                                                       |
| Index<br>Index<br>BOHF21A<br>OHF30G<br>OHS20G<br>OHS31G<br>NYF41A<br>OHF20G                                         | Jnit 3<br><u>R-SQUARE</u><br>0.7046<br>0.6989<br>0.7154<br>0.6485<br>0.7076<br>0.9134                                                        | Slope<br>0.13283<br>0.68153<br>0.82098<br>0.59883<br>0.74635<br>0.51186                                                      | Index Value<br>50.2<br>1.6<br>3.5<br>26.1<br>11.1<br>8.5                                                             | Age-2 estimate<br>6.668<br>1.090<br>2.873<br>15.629<br>8.284<br>4.351                                                                       | 0.02386<br>0.12914<br>0.14947<br>0.12726<br>0.14467<br>0.04550                                                            | Lower Age 2 CI.<br>4.273<br>0.677<br>1.827<br>8.986<br>5.073<br>3.577                                                                        | 6.327<br>Upper Age 2 CI<br>9.064<br>1.504<br>3.920<br>22.272<br>11.490<br>5.124                                                    |
| Index<br>Index<br>BOHF21A<br>OHF30G<br>OHS20G<br>OHS31G<br>NYF41A<br>OHF20G<br>OHS30G                               | Jnit 3<br>R-SQUARE<br>0.7046<br>0.6989<br>0.7154<br>0.6485<br>0.7076<br>0.9134<br>0.6656                                                     | Slope<br>0.13283<br>0.68153<br>0.82098<br>0.59883<br>0.74635<br>0.51186<br>0.88709                                           | Index Value<br>50.2<br>1.6<br>3.5<br>26.1<br>11.1<br>8.5<br>2.6                                                      | Age-2 estimate<br>6.668<br>1.090<br>2.873<br>15.629<br>8.284<br>4.351<br>2.306                                                              | 0.02386<br>0.12914<br>0.14947<br>0.12726<br>0.14467<br>0.04550<br>0.18960                                                 | Lower Age 2 CI.<br>4.273<br>0.677<br>1.827<br>8.986<br>5.073<br>3.577<br>1.321                                                               | Upper Age 2 CI<br>9.06<br>1.50<br>3.92<br>22.27<br>11.49<br>5.12<br>3.29                                                           |
| Index<br>Index<br>BOHF21A<br>OHF30G<br>OHS20G<br>OHS31G<br>NYF41A<br>OHF20G                                         | Jnit 3<br><u>R-SQUARE</u><br>0.7046<br>0.6989<br>0.7154<br>0.6485<br>0.7076<br>0.9134                                                        | Slope<br>0.13283<br>0.68153<br>0.82098<br>0.59883<br>0.74635<br>0.51186                                                      | Index Value<br>50.2<br>1.6<br>3.5<br>26.1<br>11.1<br>8.5                                                             | Age-2 estimate<br>6.668<br>1.090<br>2.873<br>15.629<br>8.284<br>4.351                                                                       | 0.02386<br>0.12914<br>0.14947<br>0.12726<br>0.14467<br>0.04550                                                            | Lower Age 2 CI.<br>4.273<br>0.677<br>1.827<br>8.986<br>5.073<br>3.577                                                                        | Upper Age 2 CI<br>9.064<br>1.504<br>3.922<br>22.27<br>11.490                                                                       |
| Index<br>Index<br>BOHF21A<br>OHF30G<br>OHS20G<br>OHS31G<br>NYF41A<br>OHF20G<br>OHS30G                               | Jnit 3<br>R-SQUARE<br>0.7046<br>0.6989<br>0.7154<br>0.6485<br>0.7076<br>0.9134<br>0.6656                                                     | Slope<br>0.13283<br>0.68153<br>0.82098<br>0.59883<br>0.74635<br>0.51186<br>0.88709                                           | Index Value<br>50.2<br>1.6<br>3.5<br>26.1<br>11.1<br>8.5<br>2.6                                                      | Age-2 estimate<br>6.668<br>1.090<br>2.873<br>15.629<br>8.284<br>4.351<br>2.306                                                              | 0.02386<br>0.12914<br>0.14947<br>0.12726<br>0.14467<br>0.04550<br>0.18960                                                 | Lower Age 2 CI.<br>4.273<br>0.677<br>1.827<br>8.986<br>5.073<br>3.577<br>1.321                                                               | Upper Age 2 CI<br>9.064<br>1.504<br>3.920<br>22.277<br>11.490<br>5.124<br>3.292                                                    |
| Index<br>Index<br>BOHF21A<br>OHF30G<br>OHS20G<br>OHS31G<br>NYF41A<br>OHF20G<br>OHS30G                               | Jnit 3<br><u>R-SQUARE</u><br>0.7046<br>0.6989<br>0.7154<br>0.6485<br>0.7076<br>0.9134<br>0.6656<br>0.5395                                    | Slope<br>0.13283<br>0.68153<br>0.82098<br>0.59883<br>0.74635<br>0.51186<br>0.88709                                           | Index Value<br>50.2<br>1.6<br>3.5<br>26.1<br>11.1<br>8.5<br>2.6<br>1.3                                               | Age-2 estimate<br>6.668<br>1.090<br>2.873<br>15.629<br>8.284<br>4.351<br>2.306<br>0.177                                                     | 0.02386<br>0.12914<br>0.14947<br>0.12726<br>0.14467<br>0.04550<br>0.18960                                                 | Lower Age 2 Cl.<br>4.273<br>0.677<br>1.827<br>8.986<br>5.073<br>3.577<br>1.321<br>0.106                                                      | Upper Age 2 CI<br>9.064<br>1.504<br>3.922<br>22.27<br>11.490<br>5.124<br>3.292<br>0.24                                             |
| Index<br>Index<br>BOHF21A<br>OHF30G<br>OHS20G<br>OHS31G<br>NYF41A<br>OHF20G<br>OHS30G<br>PAF30G                     | Jnit 3<br><u>R-SQUARE</u><br>0.7046<br>0.6989<br>0.7154<br>0.6485<br>0.7076<br>0.9134<br>0.6656<br>0.5395                                    | Slope<br>0.13283<br>0.68153<br>0.82098<br>0.59883<br>0.74635<br>0.51186<br>0.88709                                           | Index Value<br>50.2<br>1.6<br>3.5<br>26.1<br>11.1<br>8.5<br>2.6<br>1.3                                               | Age-2 estimate<br>6.668<br>1.090<br>2.873<br>15.629<br>8.284<br>4.351<br>2.306<br>0.177                                                     | 0.02386<br>0.12914<br>0.14947<br>0.12726<br>0.14467<br>0.04550<br>0.18960                                                 | Lower Age 2 Cl.<br>4.273<br>0.677<br>1.827<br>8.986<br>5.073<br>3.577<br>1.321<br>0.106                                                      | Upper Age 2 CI<br>9.06<br>1.50<br>3.92<br>22.27<br>11.49<br>5.12<br>3.29<br>0.24<br>7.115                                          |
| Index<br>Index<br>BOHF21A<br>OHF30G<br>OHS20G<br>OHS31G<br>NYF41A<br>OHF20G<br>OHS30G<br>PAF30G                     | Jnit 3<br>R-SQUARE<br>0.7046<br>0.6989<br>0.7154<br>0.6485<br>0.7076<br>0.9134<br>0.6656<br>0.5395<br>Jnit 4                                 | Slope<br>0.13283<br>0.68153<br>0.82098<br>0.59883<br>0.74635<br>0.51186<br>0.88709<br>0.13652                                | Index Value<br>50.2<br>1.6<br>3.5<br>26.1<br>11.1<br>8.5<br>2.6<br>1.3<br>mean                                       | Age-2 estimate<br>6.668<br>1.090<br>2.873<br>15.629<br>8.284<br>4.351<br>2.306<br>0.177<br><b>5.173</b>                                     | 0.02386<br>0.12914<br>0.14947<br>0.12726<br>0.14467<br>0.04550<br>0.18960<br>0.02752                                      | Lower Age 2 Cl.<br>4.273<br>0.677<br>1.827<br>8.986<br>5.073<br>3.577<br>1.321<br>0.106<br><b>3.230</b>                                      | Upper Age 2 CI<br>9.06-<br>1.50-<br>3.92(<br>22.27:<br>11.49-<br>5.12-<br>3.29:<br>0.24<br><b>7.115</b><br>Upper Age 2 CI          |
| Index<br>Index<br>BOHF21A<br>OHF30G<br>OHS20G<br>OHS20G<br>OHS31G<br>OHF20G<br>OHS30G<br>PAF30G                     | Jnit 3<br>R-SQUARE<br>0.7046<br>0.6989<br>0.7154<br>0.6485<br>0.7076<br>0.9134<br>0.6656<br>0.5395<br>Jnit 4<br>R-SQUARE                     | Slope<br>0.13283<br>0.68153<br>0.82098<br>0.59883<br>0.74635<br>0.51186<br>0.88709<br>0.13652<br>Slope                       | Index Value<br>50.2<br>1.6<br>3.5<br>26.1<br>11.1<br>8.5<br>2.6<br>1.3<br><b>mean</b><br>Index Value                 | Age-2 estimate<br>6.668<br>1.090<br>2.873<br>15.629<br>8.284<br>4.351<br>2.306<br>0.177<br><b>5.173</b><br>Age-2 estimate                   | 0.02386<br>0.12914<br>0.14947<br>0.12726<br>0.14467<br>0.04550<br>0.18960<br>0.02752<br>SE of slope                       | Lower Age 2 Cl.<br>4.273<br>0.677<br>1.827<br>8.986<br>5.073<br>3.577<br>1.321<br>0.106<br><b>3.230</b><br>Lower Age 2 Cl.                   | Upper Age 2 Cl<br>9.06<br>1.50<br>3.92<br>22.27<br>11.49<br>5.12<br>3.29<br>0.24<br><b>7.115</b><br>Upper Age 2 Cl<br>0.36         |
| Index<br>BOHF21A<br>OHF30G<br>OHS20G<br>OHS20G<br>OHS31G<br>OHS30G<br>PAF30G<br>Index<br>NYF41A                     | Jnit 3<br>R-SQUARE<br>0.7046<br>0.6989<br>0.7154<br>0.6485<br>0.7076<br>0.9134<br>0.6656<br>0.5395<br>Jnit 4<br>R-SQUARE<br>0.8067           | Slope<br>0.13283<br>0.68153<br>0.82098<br>0.59883<br>0.74635<br>0.51186<br>0.88709<br>0.13652<br>Slope<br>0.17545            | Index Value<br>50.2<br>1.6<br>3.5<br>26.1<br>11.1<br>8.5<br>2.6<br>1.3<br><b>mean</b><br>Index Value<br>1.60         | Age-2 estimate<br>6.668<br>1.090<br>2.873<br>15.629<br>8.284<br>4.351<br>2.306<br>0.177<br><b>5.173</b><br>Age-2 estimate<br>0.281          | 0.02386<br>0.12914<br>0.14947<br>0.12726<br>0.14467<br>0.04550<br>0.18960<br>0.02752<br>SE of slope<br>0.02590            | Lower Age 2 CI.<br>4.273<br>0.677<br>1.827<br>8.986<br>5.073<br>3.577<br>1.321<br>0.106<br><b>3.230</b><br>Lower Age 2 CI.<br>0.198          | Upper Age 2 Cl<br>9.06<br>1.50<br>3.92<br>22.27<br>11.49<br>5.12<br>3.29<br>0.24<br><b>7.115</b><br>Upper Age 2 Cl<br>0.36<br>0.05 |
| Index<br>BOHF21A<br>OHF30G<br>OHS20G<br>OHS31G<br>NYF41A<br>OHF20G<br>OHS30G<br>PAF30G<br>Index<br>NYF41A<br>ILP41G | Jnit 3<br>R-SQUARE<br>0.7046<br>0.6989<br>0.7154<br>0.6485<br>0.7076<br>0.9134<br>0.6656<br>0.5395<br>Jnit 4<br>R-SQUARE<br>0.8067<br>0.7227 | Slope<br>0.13283<br>0.68153<br>0.82098<br>0.59883<br>0.74635<br>0.51186<br>0.88709<br>0.13652<br>Slope<br>0.17545<br>0.36272 | Index Value<br>50.2<br>1.6<br>3.5<br>26.1<br>11.1<br>8.5<br>2.6<br>1.3<br><b>mean</b><br>Index Value<br>1.60<br>0.12 | Age-2 estimate<br>6.668<br>1.090<br>2.873<br>15.629<br>8.284<br>4.351<br>2.306<br>0.177<br><b>5.173</b><br>Age-2 estimate<br>0.281<br>0.044 | 0.02386<br>0.12914<br>0.14947<br>0.12726<br>0.14467<br>0.04550<br>0.18960<br>0.02752<br>SE of slope<br>0.02590<br>0.04903 | Lower Age 2 Cl.<br>4.273<br>0.677<br>1.827<br>8.986<br>5.073<br>3.577<br>1.321<br>0.106<br><b>3.230</b><br>Lower Age 2 Cl.<br>0.198<br>0.032 | Upper Age 2 Cl<br>9.06-<br>1.50-<br>3.922<br>22.27<br>11.49-<br>5.12-<br>3.29:<br>0.24                                             |

Appendix Table 3. Geometric catch per trawl hour index values from lakewide trawl surveys.

| Year                                                                                                                                                                                                 | ONTS10G                                                                                     | OHS10G                                                                                                                                                           | OHS11G                                                                                      | OHF10G                                                                                      | OHF11G                                                                                            | USS10G                                                                                                 | USS11G                                                                                                 | USF10G                                                                                      | USF11G                                                                                                                                                                         | ONOHP10G                                                                                    | OHS20G                                                                                                                                                                             | OHS21G                                                                                                                                                                                  | OHF20G                                                                                                                                                                                               | OHF21G                                                                                                                                                                                                                                                                                         | BOHS20G                                                                                     | BOHS21G                                                                                     | BOHF20G     | BOHF21G     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------|-------------|
| 1980                                                                                                                                                                                                 | -                                                                                           | 10.5                                                                                                                                                             | 0.0                                                                                         | 69.0                                                                                        | 10.4                                                                                              | -                                                                                                      | -                                                                                                      | -                                                                                           | -                                                                                                                                                                              | -                                                                                           | -                                                                                                                                                                                  | -                                                                                                                                                                                       | -                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                              | -                                                                                           | -                                                                                           | -           | -           |
| 1981                                                                                                                                                                                                 | -                                                                                           | 3.0                                                                                                                                                              | 7.9                                                                                         | 7.9                                                                                         | -                                                                                                 | -                                                                                                      | -                                                                                                      | -                                                                                           | -                                                                                                                                                                              | -                                                                                           | -                                                                                                                                                                                  | -                                                                                                                                                                                       | -                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                              | -                                                                                           | -                                                                                           | -           | -           |
| 1982                                                                                                                                                                                                 | 320.4                                                                                       | 30.0                                                                                                                                                             | 13.8                                                                                        | 31.6                                                                                        | -                                                                                                 | -                                                                                                      | -                                                                                                      | -                                                                                           | -                                                                                                                                                                              | -                                                                                           | -                                                                                                                                                                                  | -                                                                                                                                                                                       | -                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                              | -                                                                                           | -                                                                                           | -           | -           |
| 1983<br>1984                                                                                                                                                                                         | 2.4<br>428.3                                                                                | 2.0                                                                                                                                                              | 0.0<br>0.3                                                                                  | 2.2<br>5.3                                                                                  | -                                                                                                 | 4.0<br>7.1                                                                                             | 16.0<br>1.9                                                                                            | 2.8<br>10.9                                                                                 | 17.5<br>2.9                                                                                                                                                                    | -                                                                                           | -                                                                                                                                                                                  | -                                                                                                                                                                                       | -                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                              | -                                                                                           | -                                                                                           | -           | -           |
| 1985                                                                                                                                                                                                 | 426.3                                                                                       | 16.3<br>7.0                                                                                                                                                      | 0.3                                                                                         | 5.5<br>3.9                                                                                  | -                                                                                                 | 6.5                                                                                                    | 8.4                                                                                                    | 28.8                                                                                        | 2.9<br>12.8                                                                                                                                                                    | -                                                                                           | -                                                                                                                                                                                  | -                                                                                                                                                                                       | -                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                              | -                                                                                           | -                                                                                           | -           | -           |
| 1986                                                                                                                                                                                                 | 127.2                                                                                       | 155.8                                                                                                                                                            | 0.0                                                                                         | 7.6                                                                                         |                                                                                                   | 141.7                                                                                                  | 34.1                                                                                                   | 8.8                                                                                         | 22.7                                                                                                                                                                           | -                                                                                           | -                                                                                                                                                                                  | -                                                                                                                                                                                       | -                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                              |                                                                                             |                                                                                             |             |             |
| 1987                                                                                                                                                                                                 | 0.5                                                                                         | 3.6                                                                                                                                                              | 23.0                                                                                        | 4.1                                                                                         | -                                                                                                 | 1.4                                                                                                    | 17.3                                                                                                   | 4.3                                                                                         | 12.3                                                                                                                                                                           | 3.9                                                                                         | -                                                                                                                                                                                  | -                                                                                                                                                                                       | -                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                              | -                                                                                           | -                                                                                           | -           | -           |
| 1988                                                                                                                                                                                                 | 88.6                                                                                        | 17.8                                                                                                                                                             | 2.1                                                                                         | 3.6                                                                                         | -                                                                                                 | 43.3                                                                                                   | 3.6                                                                                                    | 1.0                                                                                         | 0.1                                                                                                                                                                            | 45.4                                                                                        | -                                                                                                                                                                                  | -                                                                                                                                                                                       | -                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                              | -                                                                                           | -                                                                                           | -           | -           |
| 1989                                                                                                                                                                                                 | 127.0                                                                                       | 20.5                                                                                                                                                             | 2.5                                                                                         | 18.8                                                                                        | -                                                                                                 | 32.6                                                                                                   | 8.1                                                                                                    | 20.0                                                                                        | 1.0                                                                                                                                                                            | 61.9                                                                                        | -                                                                                                                                                                                  | -                                                                                                                                                                                       | -                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                              | -                                                                                           | -                                                                                           | -           | -           |
| 1990                                                                                                                                                                                                 | 109.4                                                                                       | 43.8                                                                                                                                                             | 8.0                                                                                         | 54.1                                                                                        | -                                                                                                 | 29.2                                                                                                   | 6.7                                                                                                    | 59.2                                                                                        | 2.0                                                                                                                                                                            | 80.2                                                                                        | 1.0                                                                                                                                                                                | 28.4                                                                                                                                                                                    | 19.2                                                                                                                                                                                                 | 55.2                                                                                                                                                                                                                                                                                           | 1.2                                                                                         | 40.3                                                                                        | 32.5        | 52.7        |
| 1991                                                                                                                                                                                                 | 38.2                                                                                        | 21.1                                                                                                                                                             | 9.2                                                                                         | 14.4                                                                                        | 0.2                                                                                               | 16.9                                                                                                   | 17.1                                                                                                   | 63.4                                                                                        | 4.9                                                                                                                                                                            | 32.5                                                                                        | 1.9                                                                                                                                                                                | 28.5                                                                                                                                                                                    | 4.3                                                                                                                                                                                                  | 57.2                                                                                                                                                                                                                                                                                           | 1.9                                                                                         | 28.5                                                                                        | 3.3         | 54.1        |
| 1992                                                                                                                                                                                                 | 23.8                                                                                        | 11.8                                                                                                                                                             | 1.7                                                                                         | 10.2                                                                                        | 0.2                                                                                               | 4.3                                                                                                    | 0.1                                                                                                    | 17.3                                                                                        | 0.3                                                                                                                                                                            | 21.6                                                                                        | 15.0                                                                                                                                                                               | 6.7                                                                                                                                                                                     | 8.7                                                                                                                                                                                                  | 11.7                                                                                                                                                                                                                                                                                           | 15.0                                                                                        | 6.7                                                                                         | 6.7         | 9.5         |
| 1993                                                                                                                                                                                                 | 80.2                                                                                        | 83.7                                                                                                                                                             | 5.3                                                                                         | 21.2                                                                                        | 0.2                                                                                               | 28.8                                                                                                   | 0.9                                                                                                    | 17.3                                                                                        | 0.2                                                                                                                                                                            | 107.5                                                                                       | 4.0                                                                                                                                                                                | 24.3                                                                                                                                                                                    | 9.4                                                                                                                                                                                                  | 28.7                                                                                                                                                                                                                                                                                           | 4.0                                                                                         | 24.3                                                                                        | 9.1         | 34.1        |
| 1994                                                                                                                                                                                                 | 285.8                                                                                       | 62.9                                                                                                                                                             | 14.5                                                                                        | 34.9                                                                                        | 18.0                                                                                              | 419.9                                                                                                  | 8.0                                                                                                    | 78.7                                                                                        | 36.1                                                                                                                                                                           | 160.8                                                                                       | 6.5                                                                                                                                                                                | 2.8                                                                                                                                                                                     | 20.0                                                                                                                                                                                                 | 6.8                                                                                                                                                                                                                                                                                            | 6.5                                                                                         | 2.8                                                                                         | 21.4        | 8.4         |
| 1995                                                                                                                                                                                                 | 51.9                                                                                        | 26.7                                                                                                                                                             | 37.9                                                                                        | 30.8                                                                                        | 0.1                                                                                               | 475.2                                                                                                  | 23.1                                                                                                   | 9.3                                                                                         | 4.4                                                                                                                                                                            | 51.1                                                                                        | 0.8                                                                                                                                                                                | 20.0                                                                                                                                                                                    | 2.9                                                                                                                                                                                                  | 45.8                                                                                                                                                                                                                                                                                           | 0.7                                                                                         | 26.1                                                                                        | 2.4         | 66.1        |
| 1996<br>1997                                                                                                                                                                                         | 679.0<br>11.4                                                                               | 569.9<br>29.2                                                                                                                                                    | 25.6<br>33.5                                                                                | 233.9<br>5.4                                                                                | 23.5<br>30.3                                                                                      | 10633.1<br>18.3                                                                                        | 5.3<br>27.1                                                                                            | 228.7<br>5.6                                                                                | 3.9<br>9.0                                                                                                                                                                     | 649.2<br>15.0                                                                               | 61.0<br>3.5                                                                                                                                                                        | 2.7<br>855.1                                                                                                                                                                            | 95.0<br>2.1                                                                                                                                                                                          | 5.4<br>42.2                                                                                                                                                                                                                                                                                    | 55.9<br>3.5                                                                                 | 2.9<br>855.1                                                                                | 91.7<br>2.5 | 5.7<br>33.9 |
| 1997                                                                                                                                                                                                 | 11.4                                                                                        | 29.2<br>64.6                                                                                                                                                     | 2.2                                                                                         | 5.4<br>94.6                                                                                 | 5.2                                                                                               | 74.4                                                                                                   | 3.8                                                                                                    | 5.6<br>100.9                                                                                | 9.0<br>6.4                                                                                                                                                                     | 100.5                                                                                       | 3.5<br>16.9                                                                                                                                                                        | 1.8                                                                                                                                                                                     | Z.1<br>70.4                                                                                                                                                                                          | 42.2<br>3.1                                                                                                                                                                                                                                                                                    | 3.5<br>13.8                                                                                 | 1.9                                                                                         | 2.5<br>56.0 | 5.6         |
| 1990                                                                                                                                                                                                 | 171.0                                                                                       | 93.7                                                                                                                                                             | 2.2                                                                                         | 69.2                                                                                        | 21.4                                                                                              | 943.4                                                                                                  | 12.7                                                                                                   | 50.2                                                                                        | 14.7                                                                                                                                                                           | 148.3                                                                                       | 10.9                                                                                                                                                                               | 14.1                                                                                                                                                                                    | 47.6                                                                                                                                                                                                 | 48.3                                                                                                                                                                                                                                                                                           | 10.3                                                                                        | 13.9                                                                                        | 51.3        | 50.8        |
| 2000                                                                                                                                                                                                 | 16.5                                                                                        | 44.7                                                                                                                                                             | 36.7                                                                                        | 13.9                                                                                        | 16.1                                                                                              | 11.1                                                                                                   | 5.4                                                                                                    | 4.9                                                                                         | 9.0                                                                                                                                                                            | 32.4                                                                                        | 0.3                                                                                                                                                                                | 27.8                                                                                                                                                                                    | 5.6                                                                                                                                                                                                  | 39.2                                                                                                                                                                                                                                                                                           | 0.3                                                                                         | 27.8                                                                                        | 7.5         | 45.9        |
| 2001                                                                                                                                                                                                 | 243.5                                                                                       | 129.2                                                                                                                                                            | 6.8                                                                                         | 120.7                                                                                       | 4.5                                                                                               | 22.2                                                                                                   | 1.1                                                                                                    | 16.8                                                                                        | 0.6                                                                                                                                                                            | 202.4                                                                                       | 40.7                                                                                                                                                                               | 2.6                                                                                                                                                                                     | 52.1                                                                                                                                                                                                 | 5.2                                                                                                                                                                                                                                                                                            | 40.7                                                                                        | 2.6                                                                                         | 54.1        | 5.4         |
| 2002                                                                                                                                                                                                 | 10.3                                                                                        | 6.4                                                                                                                                                              | 37.9                                                                                        | 7.0                                                                                         | 44.9                                                                                              | 1.4                                                                                                    | 20.1                                                                                                   | 3.5                                                                                         | 10.5                                                                                                                                                                           | 12.1                                                                                        | 0.3                                                                                                                                                                                | 181.4                                                                                                                                                                                   | 1.2                                                                                                                                                                                                  | 20.8                                                                                                                                                                                                                                                                                           | 0.3                                                                                         | 181.4                                                                                       | 2.0         | 30.5        |
| 2003                                                                                                                                                                                                 | 751.5                                                                                       | 333.4                                                                                                                                                            | 1.0                                                                                         | 381.9                                                                                       | 2.8                                                                                               | 708.0                                                                                                  | 0.8                                                                                                    | 57.4                                                                                        | 0.2                                                                                                                                                                            | 619.6                                                                                       | 146.7                                                                                                                                                                              | 1.5                                                                                                                                                                                     | 59.4                                                                                                                                                                                                 | 1.1                                                                                                                                                                                                                                                                                            | 208.5                                                                                       | 1.9                                                                                         | 79.9        | 1.3         |
| 2004                                                                                                                                                                                                 | 29.1                                                                                        | 11.5                                                                                                                                                             | 105.5                                                                                       | 3.1                                                                                         | 79.6                                                                                              | 14.2                                                                                                   | 110.8                                                                                                  | 0.5                                                                                         | 34.2                                                                                                                                                                           | 25.7                                                                                        | 3.5                                                                                                                                                                                | 67.7                                                                                                                                                                                    | 8.5                                                                                                                                                                                                  | 159.3                                                                                                                                                                                                                                                                                          | 4.2                                                                                         | 75.4                                                                                        | 8.9         | 179.6       |
| 2005                                                                                                                                                                                                 | 78.6                                                                                        | 30.5                                                                                                                                                             | 1.4                                                                                         | 24.9                                                                                        | 0.6                                                                                               | 10.6                                                                                                   | 0.04                                                                                                   | 2.2                                                                                         | 0.6                                                                                                                                                                            | 64.0                                                                                        | 30.0                                                                                                                                                                               | 8.7                                                                                                                                                                                     | 11.4                                                                                                                                                                                                 | 12.1                                                                                                                                                                                                                                                                                           | 27.0                                                                                        | 10.3                                                                                        | 9.8         | 11.3        |
|                                                                                                                                                                                                      |                                                                                             |                                                                                                                                                                  |                                                                                             |                                                                                             |                                                                                                   |                                                                                                        |                                                                                                        |                                                                                             |                                                                                                                                                                                |                                                                                             |                                                                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                             |             |             |
|                                                                                                                                                                                                      |                                                                                             |                                                                                                                                                                  |                                                                                             |                                                                                             |                                                                                                   |                                                                                                        |                                                                                                        |                                                                                             |                                                                                                                                                                                |                                                                                             |                                                                                                                                                                                    |                                                                                                                                                                                         |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |                                                                                             |                                                                                             |             |             |
| Year                                                                                                                                                                                                 | OHS30G                                                                                      | OHS31G                                                                                                                                                           | OHF30G                                                                                      | OHF31G                                                                                      | BOHS30G                                                                                           | BOHS31G                                                                                                | BOHF30G                                                                                                | BOHF31G                                                                                     | PAF30G                                                                                                                                                                         | PAF31G                                                                                      | ILP40G                                                                                                                                                                             | ILP41G                                                                                                                                                                                  | OLP40G                                                                                                                                                                                               | OLP41G                                                                                                                                                                                                                                                                                         | NYF40G                                                                                      | NYF41G                                                                                      | -           |             |
| 1980                                                                                                                                                                                                 | -                                                                                           | OHS31G<br>-                                                                                                                                                      | OHF30G<br>-                                                                                 | OHF31G<br>-                                                                                 | BOHS30G                                                                                           | BOHS31G                                                                                                | BOHF30G                                                                                                | -                                                                                           | -                                                                                                                                                                              | -                                                                                           | 77.5                                                                                                                                                                               | 69.0                                                                                                                                                                                    | 11.8                                                                                                                                                                                                 | 25.7                                                                                                                                                                                                                                                                                           | NYF40G<br>-                                                                                 | NYF41G<br>-                                                                                 | -           |             |
| 1980<br>1981                                                                                                                                                                                         |                                                                                             | OHS31G<br>-<br>-                                                                                                                                                 | OHF30G<br>-<br>-                                                                            | OHF31G<br>-<br>-                                                                            | BOHS30G<br>-<br>-                                                                                 | BOHS31G<br>-<br>-                                                                                      | BOHF30G<br>-<br>-                                                                                      | BOHF31G<br>-<br>-                                                                           | -<br>23.0                                                                                                                                                                      | -                                                                                           | 77.5<br>357.4                                                                                                                                                                      | 69.0<br>29.9                                                                                                                                                                            | 11.8<br>21.6                                                                                                                                                                                         | 25.7<br>1.7                                                                                                                                                                                                                                                                                    | NYF40G<br>-<br>-                                                                            | NYF41G<br>-<br>-                                                                            | -           |             |
| 1980<br>1981<br>1982                                                                                                                                                                                 |                                                                                             | OHS31G<br>-<br>-<br>-                                                                                                                                            | OHF30G<br>-<br>-<br>-                                                                       | OHF31G<br>-<br>-<br>-                                                                       | BOHS30G<br>-<br>-<br>-                                                                            | BOHS31G<br>-<br>-<br>-                                                                                 | BOHF30G<br>-<br>-<br>-                                                                                 |                                                                                             | -<br>23.0<br>26.0                                                                                                                                                              |                                                                                             | 77.5<br>357.4<br>229.5                                                                                                                                                             | 69.0<br>29.9<br>16.0                                                                                                                                                                    | 11.8<br>21.6<br>7.9                                                                                                                                                                                  | 25.7<br>1.7<br>4.1                                                                                                                                                                                                                                                                             | NYF40G<br>-<br>-<br>-                                                                       | NYF41G<br>-<br>-<br>-                                                                       | -           |             |
| 1980<br>1981<br>1982<br>1983                                                                                                                                                                         | -                                                                                           | OHS31G<br>-<br>-<br>-<br>-                                                                                                                                       | OHF30G<br>-<br>-<br>-<br>-                                                                  | OHF31G<br>-<br>-<br>-<br>-                                                                  | BOHS30G<br>-<br>-<br>-<br>-                                                                       | BOHS31G<br>-<br>-<br>-<br>-                                                                            | BOHF30G<br>-<br>-<br>-<br>-                                                                            | -                                                                                           | -<br>23.0<br>26.0<br>0.5                                                                                                                                                       | -<br>-<br>-                                                                                 | 77.5<br>357.4<br>229.5<br>25.6                                                                                                                                                     | 69.0<br>29.9<br>16.0                                                                                                                                                                    | 11.8<br>21.6<br>7.9                                                                                                                                                                                  | 25.7<br>1.7<br>4.1                                                                                                                                                                                                                                                                             | NYF40G<br>-<br>-<br>-<br>-                                                                  | NYF41G<br>-<br>-<br>-<br>-                                                                  | -           |             |
| 1980<br>1981<br>1982<br>1983<br>1984                                                                                                                                                                 | -<br>-<br>-                                                                                 | OHS31G<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                             | OHF30G<br>-<br>-<br>-<br>-<br>-                                                             | OHF31G<br>-<br>-<br>-<br>-<br>-                                                             | BOHS30G<br>-<br>-<br>-<br>-<br>-<br>-                                                             | BOHS31G<br>-<br>-<br>-<br>-<br>-                                                                       | BOHF30G<br>-<br>-<br>-<br>-<br>-<br>-                                                                  | -<br>-<br>-                                                                                 | -<br>23.0<br>26.0<br>0.5<br>385.0                                                                                                                                              | -<br>-<br>-<br>-                                                                            | 77.5<br>357.4<br>229.5<br>25.6<br>414.8                                                                                                                                            | 69.0<br>29.9<br>16.0<br>-<br>16.0                                                                                                                                                       | 11.8<br>21.6<br>7.9<br>-<br>57.0                                                                                                                                                                     | 25.7<br>1.7<br>4.1<br>-<br>1.4                                                                                                                                                                                                                                                                 | NYF40G<br>-<br>-<br>-<br>-<br>-<br>-                                                        | NYF41G<br>-<br>-<br>-<br>-<br>-<br>-                                                        | -           |             |
| 1980<br>1981<br>1982<br>1983                                                                                                                                                                         | -<br>-<br>-                                                                                 | OHS31G<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                        | OHF30G<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                   | OHF31G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                              | BOHS30G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                    | BOHS31G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                        | BOHF30G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                   |                                                                                             | 23.0<br>26.0<br>0.5<br>385.0<br>4.0                                                                                                                                            | -<br>-<br>-                                                                                 | 77.5<br>357.4<br>229.5<br>25.6                                                                                                                                                     | 69.0<br>29.9<br>16.0<br>-<br>16.0<br>32.7                                                                                                                                               | 11.8<br>21.6<br>7.9                                                                                                                                                                                  | 25.7<br>1.7<br>4.1                                                                                                                                                                                                                                                                             | NYF40G<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                   | NYF41G<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                   | -           |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985                                                                                                                                                         | -<br>-<br>-                                                                                 | OHS31G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                         | OHF30G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               | OHF31G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               | BOHS30G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | BOHS31G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHF30G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | -<br>-<br>-                                                                                 | -<br>23.0<br>26.0<br>0.5<br>385.0                                                                                                                                              | -<br>-<br>-<br>-                                                                            | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0                                                                                                                                     | 69.0<br>29.9<br>16.0<br>-<br>16.0                                                                                                                                                       | 11.8<br>21.6<br>7.9<br>-<br>57.0<br>0.7                                                                                                                                                              | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6                                                                                                                                                                                                                                                          | NYF40G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               | NYF41G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                              |             |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986                                                                                                                                                 |                                                                                             | OHS31G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                          | OHF30G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          |                                                                                             | BOHS30G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                | BOHS31G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | BOHF30G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               |                                                                                             | 23.0<br>26.0<br>0.5<br>385.0<br>4.0<br>125.0                                                                                                                                   | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                        | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0<br>465.4                                                                                                                            | 69.0<br>29.9<br>16.0<br>-<br>16.0<br>32.7<br>3.8                                                                                                                                        | 11.8<br>21.6<br>7.9<br>-<br>57.0<br>0.7<br>38.5                                                                                                                                                      | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6<br>0.3                                                                                                                                                                                                                                                   | NYF40G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               | NYF41G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               | -           |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987                                                                                                                                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                              | OHS31G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                      | OHF30G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                                                             | BOHS30G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS31G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHF30G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                        | 23.0<br>26.0<br>0.5<br>385.0<br>4.0<br>125.0<br>25.0                                                                                                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                   | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0<br>465.4<br>0.7                                                                                                                     | 69.0<br>29.9<br>16.0<br>-<br>16.0<br>32.7<br>3.8<br>2.6                                                                                                                                 | 11.8<br>21.6<br>7.9<br>-<br>57.0<br>0.7<br>38.5<br>1.1                                                                                                                                               | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6<br>0.3<br>10.8                                                                                                                                                                                                                                           | NYF40G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                     | NYF41G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                | -           |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990                                                                                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>5.3                                                                                                            |                                                                                             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>15.8                                      | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>0.2                                        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>3.4                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>5.5                                                            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>18.5                                 | 23.0<br>26.0<br>0.5<br>385.0<br>4.0<br>125.0<br>25.0<br>40.0<br>0.5<br>3.0                                                                                                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                   | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0<br>465.4<br>0.7<br>73.4<br>70.0<br>27.2                                                                                             | 69.0<br>29.9<br>16.0<br>32.7<br>3.8<br>2.6<br>0.8<br>6.4<br>8.9                                                                                                                         | 11.8<br>21.6<br>7.9<br>57.0<br>0.7<br>38.5<br>1.1<br>47.3<br>18.0<br>8.2                                                                                                                             | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6<br>0.3<br>10.8<br>0.4<br>6.8<br>3.4                                                                                                                                                                                                                      | NYF40G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-           | NYF41G<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                | -           |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991                                                                                                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>5.3<br>6.3                                                                                                                              | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>15.8<br>18.7                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>3.4<br>13.6                                                         | -<br>-<br>-<br>-<br>-<br>-<br>5.5<br>0.8                                                               | -<br>-<br>-<br>-<br>-<br>-<br>18.5<br>14.9                                                  | 23.0<br>26.0<br>0.5<br>385.0<br>4.0<br>125.0<br>25.0<br>40.0<br>0.5<br>3.0<br>5.0                                                                                              |                                                                                             | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0<br>465.4<br>0.7<br>73.4<br>70.0<br>27.2<br>8.0                                                                                      | 69.0<br>29.9<br>16.0<br>                                                                                                                                                                | 11.8<br>21.6<br>7.9<br>57.0<br>0.7<br>38.5<br>1.1<br>47.3<br>18.0<br>8.2<br>2.0                                                                                                                      | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6<br>0.3<br>10.8<br>0.4<br>6.8<br>3.4<br>0.5                                                                                                                                                                                                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                    |                                                                                             | -           |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992                                                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>5.3<br>6.3<br>2.5                                                                                                                       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>15.8<br>18.7<br>3.6                                           | -<br>-<br>-<br>-<br>-<br>0.2<br>2.4<br>21.3                                                       | -<br>-<br>-<br>-<br>-<br>3.4<br>13.6<br>1.4                                                            | -<br>-<br>-<br>-<br>-<br>5.5<br>0.8<br>26.9                                                            | -<br>-<br>-<br>-<br>18.5<br>14.9<br>4.1                                                     | 23.0<br>26.0<br>0.5<br>385.0<br>4.0<br>125.0<br>25.0<br>40.0<br>0.5<br>3.0<br>5.0<br>50.0                                                                                      | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                         | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0<br>465.4<br>0.7<br>73.4<br>70.0<br>27.2<br>8.0<br>46.5                                                                              | 69.0<br>29.9<br>16.0<br>32.7<br>3.8<br>2.6<br>0.8<br>6.4<br>8.9<br>2.8<br>3.3                                                                                                           | 11.8<br>21.6<br>7.9<br>57.0<br>0.7<br>38.5<br>1.1<br>47.3<br>18.0<br>8.2<br>2.0<br>6.1                                                                                                               | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6<br>0.3<br>10.8<br>0.4<br>6.8<br>3.4<br>0.5<br>1.4                                                                                                                                                                                                        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>4.4                        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>1.8              |             |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993                                                                                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>5.3<br>6.3<br>2.5<br>4.7                                                                                                                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>15.8<br>18.7<br>3.6<br>12.6                                        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-       | -<br>-<br>-<br>-<br>3.4<br>13.6<br>1.4<br>4.7                                                          | -<br>-<br>-<br>-<br>-<br>5.5<br>0.8<br>26.9<br>22.0                                                    | -<br>-<br>-<br>-<br>-<br>18.5<br>14.9<br>4.1<br>15.0                                        | 23.0<br>26.0<br>0.5<br>385.0<br>4.0<br>125.0<br>25.0<br>40.0<br>0.5<br>3.0<br>5.0<br>50.0<br>38.0                                                                              |                                                                                             | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0<br>465.4<br>0.7<br>73.4<br>70.0<br>27.2<br>8.0<br>46.5<br>19.2                                                                      | 69.0<br>29.9<br>16.0<br>32.7<br>3.8<br>2.6<br>0.8<br>6.4<br>8.9<br>2.8<br>3.3<br>5.8                                                                                                    | 11.8<br>21.6<br>7.9<br>57.0<br>0.7<br>38.5<br>1.1<br>47.3<br>18.0<br>8.2<br>2.0<br>6.1<br>6.2                                                                                                        | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6<br>0.3<br>10.8<br>0.4<br>6.8<br>3.4<br>0.5<br>1.4<br>1.2                                                                                                                                                                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |             |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994                                                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>5.3<br>6.3<br>2.5<br>4.7<br>1.6                                                                                                              | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>15.8<br>18.7<br>3.6<br>12.6<br>1.5                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-       | -<br>-<br>-<br>-<br>-<br>3.4<br>13.6<br>1.4<br>4.7<br>1.6                                              | -<br>-<br>-<br>-<br>-<br>5.5<br>0.8<br>26.9<br>22.0<br>12.2                                            | -<br>-<br>-<br>-<br>-<br>18.5<br>14.9<br>4.1<br>15.0<br>2.0                                 | 23.0<br>26.0<br>0.5<br>385.0<br>4.0<br>125.0<br>25.0<br>40.0<br>0.5<br>3.0<br>5.0<br>5.0<br>38.0<br>172.0                                                                      | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0<br>465.4<br>0.7<br>73.4<br>70.0<br>27.2<br>8.0<br>46.5<br>19.2<br>13.2                                                              | 69.0<br>29.9<br>16.0<br>32.7<br>3.8<br>2.6<br>0.8<br>6.4<br>8.9<br>2.8<br>3.3<br>5.8<br>3.8                                                                                             | 11.8<br>21.6<br>7.9<br>-<br>57.0<br>0.7<br>38.5<br>1.1<br>47.3<br>18.0<br>8.2<br>2.0<br>6.1<br>6.2<br>26.4                                                                                           | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6<br>0.3<br>10.8<br>0.3<br>10.8<br>0.4<br>6.8<br>3.4<br>0.5<br>1.4<br>1.2<br>3.3                                                                                                                                                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -           |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994                                                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>5.3<br>6.3<br>2.5<br>4.7<br>1.6<br>9.2                                                                                                       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>15.8<br>18.7<br>3.6<br>12.6<br>1.5<br>35.1                              | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-            | -<br>-<br>-<br>-<br>-<br>-<br>5.5<br>0.8<br>26.9<br>22.0<br>12.2<br>13.1                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 23.0<br>26.0<br>0.5<br>385.0<br>4.0<br>125.0<br>25.0<br>40.0<br>0.5<br>3.0<br>5.0<br>5.0<br>50.0<br>38.0<br>172.0<br>20.0                                                      | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0<br>465.4<br>0.7<br>73.4<br>0.7<br>73.4<br>0.0<br>27.2<br>8.0<br>46.5<br>19.2<br>13.2<br>1.2                                         | 69.0<br>29.9<br>16.0<br>32.7<br>3.8<br>2.6<br>0.8<br>6.4<br>8.9<br>2.8<br>3.3<br>5.8<br>3.8<br>5.4                                                                                      | 11.8<br>21.6<br>7.9<br>-<br>57.0<br>0.7<br>38.5<br>1.1<br>47.3<br>18.0<br>8.2<br>2.0<br>6.1<br>6.2<br>26.4<br>2.4                                                                                    | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6<br>0.3<br>10.8<br>0.4<br>6.8<br>3.4<br>0.5<br>1.4<br>1.2<br>3.3<br>10.4                                                                                                                                                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -           |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994                                                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>5.3<br>6.3<br>2.5<br>4.7<br>1.6<br>9.2<br>1.2                                                                                                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-            | -<br>-<br>-<br>-<br>-<br>5.5<br>0.8<br>26.9<br>22.0<br>12.2<br>13.1<br>96.7                            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 23.0<br>26.0<br>0.5<br>385.0<br>4.0<br>125.0<br>25.0<br>40.0<br>0.5<br>3.0<br>5.0<br>5.0<br>5.0<br>38.0<br>172.0<br>20.0<br>214.8                                              |                                                                                             | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0<br>465.4<br>0.7<br>73.4<br>70.0<br>27.2<br>8.0<br>46.5<br>19.2<br>13.2<br>1.2<br>12.6                                               | 69.0<br>29.9<br>16.0<br>32.7<br>3.8<br>2.6<br>0.8<br>6.4<br>8.9<br>2.8<br>3.3<br>5.8<br>3.3<br>5.8<br>3.8<br>5.4<br>1.5                                                                 | 11.8<br>21.6<br>7.9<br>-<br>57.0<br>0.7<br>38.5<br>1.1<br>47.3<br>18.0<br>8.2<br>2.0<br>6.1<br>6.2<br>26.4<br>2.4<br>36.8                                                                            | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6<br>0.3<br>10.8<br>0.4<br>6.8<br>3.4<br>0.5<br>1.4<br>1.2<br>3.3<br>10.4<br>1.2                                                                                                                                                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>1.8<br>2.1<br>2.6<br>9.6<br>0.2                               | -           |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996                                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>5.3<br>6.3<br>2.5<br>4.7<br>1.6<br>9.2<br>1.2                                                                                                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>15.8<br>18.7<br>3.6<br>12.6<br>1.5<br>35.1<br>3.2<br>7.5                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-       | -<br>-<br>-<br>-<br>3.4<br>13.6<br>1.4<br>4.7<br>1.6<br>7.3<br>1.1                                     | -<br>-<br>-<br>-<br>-<br>5.5<br>0.8<br>26.9<br>22.0<br>12.2<br>13.1<br>96.7<br>1.7                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 23.0<br>26.0<br>0.5<br>385.0<br>4.0<br>125.0<br>25.0<br>40.0<br>0.5<br>3.0<br>5.0<br>50.0<br>38.0<br>172.0<br>20.0<br>214.8<br>0.0                                             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0<br>465.4<br>0.7<br>73.4<br>70.0<br>27.2<br>8.0<br>46.5<br>19.2<br>13.2<br>1.2<br>12.6<br>3.1                                        | 69.0<br>29.9<br>16.0<br>32.7<br>3.8<br>2.6<br>0.8<br>6.4<br>8.9<br>2.8<br>3.3<br>5.8<br>3.8<br>5.8<br>3.8<br>5.4<br>1.5<br>1.6                                                          | 11.8<br>21.6<br>7.9<br>-<br>57.0<br>0.7<br>38.5<br>1.1<br>47.3<br>18.0<br>8.2<br>2.0<br>6.1<br>6.2<br>26.4<br>2.4<br>36.8<br>2.6                                                                     | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6<br>0.3<br>10.8<br>0.4<br>6.8<br>3.4<br>0.5<br>1.4<br>1.2<br>3.3<br>10.4<br>1.2<br>4.5                                                                                                                                                                    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>1.8<br>2.1<br>2.6<br>9.6<br>0.2<br>1.5                        | -           |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996                                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>5.3<br>6.3<br>2.5<br>4.7<br>1.6<br>9.2<br>1.2<br>-                                                                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>15.8<br>18.7<br>3.6<br>1.5<br>35.1<br>3.2<br>7.5<br>1.1                      | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 23.0<br>26.0<br>0.5<br>385.0<br>4.0<br>125.0<br>25.0<br>40.0<br>0.5<br>3.0<br>5.0<br>5.0<br>5.0<br>5.0<br>38.0<br>172.0<br>20.0<br>214.8<br>0.0<br>0.2                         |                                                                                             | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0<br>465.4<br>0.7<br>73.4<br>70.0<br>27.2<br>8.0<br>46.5<br>19.2<br>13.2<br>1.2<br>12.6<br>3.1<br>383.3                               | 69.0<br>29.9<br>16.0<br>32.7<br>3.8<br>2.6<br>0.8<br>6.4<br>8.9<br>2.8<br>3.3<br>5.8<br>3.8<br>5.4<br>1.5<br>1.6<br>3.6                                                                 | 11.8<br>21.6<br>7.9<br>-<br>57.0<br>0.7<br>38.5<br>1.1<br>47.3<br>18.0<br>8.2<br>2.0<br>6.1<br>6.2<br>26.4<br>2.4<br>36.8<br>2.6<br>14.3                                                             | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6<br>0.3<br>10.8<br>0.4<br>6.8<br>3.4<br>0.5<br>1.4<br>5.6<br>0.3<br>10.8<br>3.4<br>0.5<br>1.2<br>3.3<br>10.4<br>4.5<br>0.5<br>1.2<br>3.3<br>10.4<br>1.2<br>4.5<br>0.7<br>1.2<br>1.2<br>4.5<br>0.7<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>4.4<br>54.9<br>12.8<br>4.9<br>24.1<br>0.1<br>0.6    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |             |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999                                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>5.3<br>6.3<br>2.5<br>4.7<br>1.6<br>9.2<br>1.2<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 23.0<br>26.0<br>0.5<br>385.0<br>4.0<br>125.0<br>25.0<br>40.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>21.0<br>21.0<br>21.0<br>21.0<br>21.0                          | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0<br>465.4<br>0.7<br>73.4<br>70.0<br>27.2<br>8.0<br>46.5<br>19.2<br>13.2<br>1.2<br>12.6<br>3.1<br>383.3<br>5.1                        | 69.0<br>29.9<br>16.0<br>32.7<br>3.8<br>2.6<br>0.8<br>6.4<br>8.9<br>2.8<br>3.3<br>5.8<br>3.8<br>5.4<br>1.5<br>1.6<br>3.6<br>17.6                                                         | 11.8<br>21.6<br>7.9<br>-<br>57.0<br>0.7<br>38.5<br>1.1<br>47.3<br>18.0<br>8.2<br>2.0<br>6.1<br>6.2<br>26.4<br>2.4<br>36.8<br>2.6<br>14.3<br>0.6                                                      | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6<br>0.3<br>10.8<br>0.4<br>6.8<br>3.4<br>0.5<br>1.4<br>1.2<br>3.3<br>10.4<br>1.2<br>3.3<br>10.4<br>1.2<br>8.8                                                                                                                                              | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |             |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996                                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>5.3<br>6.3<br>2.5<br>4.7<br>1.6<br>9.2<br>1.2<br>-                                                                                           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>15.8<br>18.7<br>3.6<br>1.5<br>35.1<br>3.2<br>7.5<br>1.1                      | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 23.0<br>26.0<br>0.5<br>385.0<br>4.0<br>125.0<br>25.0<br>40.0<br>0.5<br>3.0<br>5.0<br>5.0<br>5.0<br>5.0<br>38.0<br>172.0<br>20.0<br>214.8<br>0.0<br>0.2                         |                                                                                             | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0<br>465.4<br>0.7<br>73.4<br>70.0<br>27.2<br>8.0<br>46.5<br>19.2<br>13.2<br>1.2<br>12.6<br>3.1<br>383.3                               | 69.0<br>29.9<br>16.0<br>32.7<br>3.8<br>2.6<br>0.8<br>6.4<br>8.9<br>2.8<br>3.3<br>5.8<br>3.8<br>5.4<br>1.5<br>1.6<br>3.6                                                                 | 11.8<br>21.6<br>7.9<br>-<br>57.0<br>0.7<br>38.5<br>1.1<br>47.3<br>18.0<br>8.2<br>2.0<br>6.1<br>6.2<br>26.4<br>2.4<br>36.8<br>2.6<br>14.3                                                             | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6<br>0.3<br>10.8<br>0.4<br>6.8<br>3.4<br>0.5<br>1.4<br>5.6<br>0.3<br>10.8<br>3.4<br>0.5<br>1.2<br>3.3<br>10.4<br>4.5<br>0.5<br>1.2<br>3.3<br>10.4<br>1.2<br>4.5<br>0.7<br>1.2<br>1.2<br>4.5<br>0.7<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>4.4<br>54.9<br>12.8<br>4.9<br>24.1<br>0.1<br>0.6    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |             |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>5.3<br>6.3<br>2.5<br>4.7<br>1.6<br>9.2<br>1.2<br>-<br>1.2<br>22.2<br>22.3                                                                    | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 23.0<br>26.0<br>0.5<br>385.0<br>4.0<br>125.0<br>25.0<br>40.0<br>0.5<br>3.0<br>5.0<br>5.0<br>5.0<br>38.0<br>172.0<br>20.0<br>214.8<br>0.0<br>0.2<br>15.0<br>14.4                | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0<br>465.4<br>0.7<br>73.4<br>70.0<br>27.2<br>8.0<br>46.5<br>19.2<br>13.2<br>1.2<br>12.6<br>3.1<br>383.3<br>5.1<br>0.7                 | 69.0<br>29.9<br>16.0<br>32.7<br>3.8<br>2.6<br>0.8<br>6.4<br>8.9<br>2.8<br>3.3<br>5.8<br>3.8<br>5.4<br>1.5<br>1.6<br>3.6<br>17.6<br>0.8                                                  | 11.8<br>21.6<br>7.9<br>-<br>57.0<br>0.7<br>38.5<br>1.1<br>47.3<br>18.0<br>8.2<br>2.0<br>6.1<br>6.2<br>26.4<br>2.4<br>36.8<br>2.6<br>14.3<br>0.6<br>2.6                                               | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6<br>0.3<br>10.8<br>0.4<br>6.8<br>3.4<br>0.5<br>1.4<br>1.2<br>3.3<br>10.4<br>1.2<br>4.5<br>0.7<br>8.8<br>1.1                                                                                                                                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -           |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>1996<br>1997<br>2000<br>2001                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>5.3<br>6.3<br>2.5<br>4.7<br>1.6<br>9.2<br>1.2<br>-<br>1.2<br>22.2<br>22.3<br>5.3                                                             | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 23.0<br>26.0<br>0.5<br>385.0<br>4.0<br>125.0<br>25.0<br>40.0<br>0.5<br>3.0<br>5.0<br>50.0<br>38.0<br>172.0<br>20.0<br>214.8<br>0.0<br>0.2<br>15.0<br>14.4<br>35.8              | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0<br>465.4<br>0.7<br>73.4<br>70.0<br>27.2<br>8.0<br>46.5<br>19.2<br>13.2<br>1.2<br>12.6<br>3.1<br>383.3<br>5.1<br>0.7<br>169.7        | 69.0<br>29.9<br>16.0<br>32.7<br>3.8<br>2.6<br>0.8<br>6.4<br>8.9<br>2.8<br>3.3<br>5.8<br>3.3<br>5.8<br>3.3<br>5.8<br>3.3<br>5.8<br>3.8<br>5.4<br>1.5<br>1.6<br>3.6<br>17.6<br>0.8<br>1.6 | $\begin{array}{c} 11.8\\ 21.6\\ 7.9\\ -\\ 57.0\\ 0.7\\ 38.5\\ 1.1\\ 47.3\\ 18.0\\ 8.2\\ 2.0\\ 6.1\\ 6.2\\ 26.4\\ 2.4\\ 36.8\\ 2.6\\ 14.3\\ 0.6\\ 2.6\\ 26.1\end{array}$                              | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6<br>0.3<br>10.8<br>0.4<br>6.8<br>3.4<br>0.5<br>1.4<br>1.2<br>3.3<br>10.4<br>1.2<br>4.5<br>0.7<br>8.8<br>1.1<br>0.5                                                                                                                                        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -           |             |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>5.3<br>6.3<br>2.5<br>4.7<br>1.6<br>9.2<br>1.2<br>-<br>1.2<br>22.2<br>22.3<br>5.3<br>82.3                                                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-       | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 23.0<br>26.0<br>0.5<br>385.0<br>25.0<br>40.0<br>125.0<br>25.0<br>40.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>20.0<br>214.8<br>0.0<br>0.2<br>15.0<br>14.4<br>35.8<br>20.8 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 77.5<br>357.4<br>229.5<br>25.6<br>414.8<br>6.0<br>465.4<br>0.7<br>73.4<br>70.0<br>27.2<br>8.0<br>46.5<br>19.2<br>13.2<br>1.2<br>12.6<br>3.1<br>383.3<br>5.1<br>0.7<br>169.7<br>1.5 | 69.0<br>29.9<br>16.0<br>32.7<br>3.8<br>2.6<br>0.8<br>6.4<br>8.9<br>2.8<br>3.3<br>5.8<br>3.8<br>5.4<br>1.5<br>1.6<br>3.6<br>17.6<br>0.8<br>1.6<br>9.6                                    | $\begin{array}{c} 11.8\\ 21.6\\ 7.9\\ -\\ 57.0\\ 0.7\\ 38.5\\ 1.1\\ 47.3\\ 18.0\\ 8.2\\ 2.0\\ 6.1\\ 6.2\\ 26.4\\ 2.4\\ 36.8\\ 2.6\\ 14.3\\ 0.6\\ 2.6\\ 14.3\\ 0.6\\ 2.6\\ 2.6.1\\ 0.2\\ \end{array}$ | 25.7<br>1.7<br>4.1<br>-<br>1.4<br>5.6<br>0.3<br>10.8<br>0.4<br>6.8<br>3.4<br>0.5<br>1.4<br>1.2<br>3.3<br>10.4<br>4.5<br>0.7<br>8.8<br>1.1<br>0.5<br>5.1                                                                                                                                        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -           |             |

Appendix Table 4. Arithmetic catch per trawl hour index values from lakewide trawl surveys.

| Year                                                                                                                                                                                                         | ONTS10A                                                                                     | OHS10A                                                                                                                                       | OHS11A                                                                                                               | OHF10A                                                                                                | OHF11A                                                                                                 | USS10A                                                                                                 | USS11A                                                                                                             | USF10A                                                                                                 | USF11A     | ONOHP10A                                                      | OHS20A                                                                                                                                                                                                      | OHS21A                                                                                                                                                                                     | OHF20A                                                                                                                                                                                        | OHF21A                                                                                                                                                                           | BOHS20A                                                                                                  | BOHS21A                                                                                               | BOHF20A      | BOHF21A       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------|---------------|
| 1980                                                                                                                                                                                                         | -                                                                                           | 122.0                                                                                                                                        | 0.0                                                                                                                  | 663.7                                                                                                 | 191.0                                                                                                  | -                                                                                                      | -                                                                                                                  | -                                                                                                      | -          | -                                                             | -                                                                                                                                                                                                           | -                                                                                                                                                                                          | -                                                                                                                                                                                             | -                                                                                                                                                                                | -                                                                                                        | -                                                                                                     | -            | -             |
| 981                                                                                                                                                                                                          | -                                                                                           | 29.5                                                                                                                                         | 56.0                                                                                                                 | 110.6                                                                                                 | -                                                                                                      | -                                                                                                      | -                                                                                                                  | -                                                                                                      | -          | -                                                             | -                                                                                                                                                                                                           | -                                                                                                                                                                                          | -                                                                                                                                                                                             | -                                                                                                                                                                                | -                                                                                                        | -                                                                                                     | -            | -             |
| 982                                                                                                                                                                                                          | 1952.4                                                                                      | 359.1                                                                                                                                        | 124.3                                                                                                                | 854.0                                                                                                 | -                                                                                                      | -                                                                                                      | -                                                                                                                  | -                                                                                                      | -          | -                                                             | -                                                                                                                                                                                                           | -                                                                                                                                                                                          | -                                                                                                                                                                                             | -                                                                                                                                                                                | -                                                                                                        | -                                                                                                     | -            | -             |
| 983                                                                                                                                                                                                          | 5.4                                                                                         | 30.5                                                                                                                                         | 0.0                                                                                                                  | 5.8                                                                                                   | -                                                                                                      | 19.8                                                                                                   | 59.2                                                                                                               | 15.0                                                                                                   | 43.3       | -                                                             | -                                                                                                                                                                                                           | -                                                                                                                                                                                          | -                                                                                                                                                                                             | -                                                                                                                                                                                | -                                                                                                        | -                                                                                                     | -            | -             |
| 984                                                                                                                                                                                                          | 2493.5                                                                                      | 138.3                                                                                                                                        | 0.8                                                                                                                  | 110.0                                                                                                 | -                                                                                                      | 28.5                                                                                                   | 5.8                                                                                                                | 46.4                                                                                                   | 11.8       | -                                                             | -                                                                                                                                                                                                           | -                                                                                                                                                                                          | -                                                                                                                                                                                             | -                                                                                                                                                                                | -                                                                                                        | -                                                                                                     | -            | -             |
| 985                                                                                                                                                                                                          | 885.0                                                                                       | 26.1                                                                                                                                         | 0.0                                                                                                                  | 39.0                                                                                                  | -                                                                                                      | 42.0                                                                                                   | 34.0                                                                                                               | 71.4                                                                                                   | 27.2       | -                                                             | -                                                                                                                                                                                                           | -                                                                                                                                                                                          | -                                                                                                                                                                                             | -                                                                                                                                                                                | -                                                                                                        | -                                                                                                     | -            | -             |
| 986                                                                                                                                                                                                          | 2503.6                                                                                      | 1143.7                                                                                                                                       | 0.0                                                                                                                  | 61.5                                                                                                  | -                                                                                                      | 1295.0                                                                                                 | 162.3                                                                                                              | 63.7                                                                                                   | 76.3       | -                                                             | -                                                                                                                                                                                                           | -                                                                                                                                                                                          | -                                                                                                                                                                                             | -                                                                                                                                                                                | -                                                                                                        | -                                                                                                     | -            | -             |
| 1987                                                                                                                                                                                                         | 0.7                                                                                         | 20.0                                                                                                                                         | 104.4                                                                                                                | 18.0                                                                                                  | -                                                                                                      | 5.0                                                                                                    | 41.0                                                                                                               | 12.8                                                                                                   | 61.2       | 10.8                                                          | -                                                                                                                                                                                                           | -                                                                                                                                                                                          | -                                                                                                                                                                                             | -                                                                                                                                                                                | -                                                                                                        | -                                                                                                     | -            | -             |
| 1988                                                                                                                                                                                                         | 328.7                                                                                       | 145.9                                                                                                                                        | 12.6                                                                                                                 | 35.0                                                                                                  | -                                                                                                      | 129.0                                                                                                  | 10.3                                                                                                               | 5.8                                                                                                    | 0.3        | 224.5                                                         | -                                                                                                                                                                                                           | -                                                                                                                                                                                          | -                                                                                                                                                                                             | -                                                                                                                                                                                | -                                                                                                        | -                                                                                                     | -            | -             |
| 1989                                                                                                                                                                                                         | 788.7                                                                                       | 107.2                                                                                                                                        | 15.7                                                                                                                 | 113.5                                                                                                 | -                                                                                                      | 149.8                                                                                                  | 15.7                                                                                                               | 34.2                                                                                                   | 3.3        | 448.0                                                         | -                                                                                                                                                                                                           | -                                                                                                                                                                                          | -                                                                                                                                                                                             | -                                                                                                                                                                                | -                                                                                                        | -                                                                                                     | -            | -             |
| 1990                                                                                                                                                                                                         | 739.7                                                                                       | 145.5                                                                                                                                        | 26.4                                                                                                                 | 330.0                                                                                                 |                                                                                                        | 81.0                                                                                                   | 22.2                                                                                                               | 176.2                                                                                                  | 6.3        | 458.7                                                         | 4.1                                                                                                                                                                                                         | 167.8                                                                                                                                                                                      | 108.8                                                                                                                                                                                         | 59.9                                                                                                                                                                             | 4.1                                                                                                      | 167.8                                                                                                 | 130.3        | 57.4          |
| 1991<br>1992                                                                                                                                                                                                 | 109.3                                                                                       | 139.3                                                                                                                                        | 34.1                                                                                                                 | 61.8<br>01 5                                                                                          | 0.6                                                                                                    | 185.2                                                                                                  | 35.0                                                                                                               | 210.8                                                                                                  | 18.0       | 124.3                                                         | 10.7                                                                                                                                                                                                        | 95.7<br>10.2                                                                                                                                                                               | 27.0                                                                                                                                                                                          | 120.8                                                                                                                                                                            | 10.7                                                                                                     | 95.7<br>10.2                                                                                          | 23.3         | 115.6         |
| 1992                                                                                                                                                                                                         | 262.0<br>766.9                                                                              | 65.4<br>1261.0                                                                                                                               | 12.9<br>19.6                                                                                                         | 91.5<br>274.5                                                                                         | 1.0<br>4.8                                                                                             | 21.0<br>321.7                                                                                          | 0.5<br>6.0                                                                                                         | 75.3<br>137.7                                                                                          | 2.5<br>0.5 | 159.8<br>1052.5                                               | 16.4<br>104.0                                                                                                                                                                                               | 19.2<br>72.5                                                                                                                                                                               | 92.1<br>23.9                                                                                                                                                                                  | 34.7<br>92.7                                                                                                                                                                     | 16.4<br>104.0                                                                                            | 19.2<br>72.5                                                                                          | 82.0<br>24.9 | 31.8<br>116.8 |
| 1994                                                                                                                                                                                                         | 950.4                                                                                       | 526.5                                                                                                                                        | 78.2                                                                                                                 | 289.4                                                                                                 | 97.4                                                                                                   | 4281.8                                                                                                 | 40.3                                                                                                               | 162.0                                                                                                  | 57.8       | 733.0                                                         | 144.2                                                                                                                                                                                                       | 12.3                                                                                                                                                                                       | 155.7                                                                                                                                                                                         | 26.9                                                                                                                                                                             | 144.2                                                                                                    | 12.3                                                                                                  | 146.4        | 29.3          |
| 1995                                                                                                                                                                                                         | 1337.8                                                                                      | 348.0                                                                                                                                        | 167.8                                                                                                                | 81.6                                                                                                  | 0.2                                                                                                    | 2866.6                                                                                                 | 223.4                                                                                                              | 27.5                                                                                                   | 20.0       | 815.4                                                         | 8.7                                                                                                                                                                                                         | 278.7                                                                                                                                                                                      | 8.0                                                                                                                                                                                           | 180.4                                                                                                                                                                            | 6.0                                                                                                      | 412.0                                                                                                 | 6.7          | 27.3          |
| 1996                                                                                                                                                                                                         | 3309.9                                                                                      | 3284.9                                                                                                                                       | 107.5                                                                                                                | 644.2                                                                                                 | 121.5                                                                                                  | 11444.0                                                                                                | 13.2                                                                                                               | 737.2                                                                                                  | 9.2        | 3296.2                                                        | 2721.8                                                                                                                                                                                                      | 31.6                                                                                                                                                                                       | 347.0                                                                                                                                                                                         | 35.0                                                                                                                                                                             | 2299.8                                                                                                   | 412.0                                                                                                 | 320.6        | 30.2          |
| 1997                                                                                                                                                                                                         | 109.9                                                                                       | 58.2                                                                                                                                         | 175.4                                                                                                                | 37.2                                                                                                  | 156.9                                                                                                  | 293.7                                                                                                  | 85.3                                                                                                               | 39.3                                                                                                   | 51.0       | 81.2                                                          | 79.0                                                                                                                                                                                                        | 1848.0                                                                                                                                                                                     | 24.2                                                                                                                                                                                          | 402.1                                                                                                                                                                            | 79.0                                                                                                     | 1848.0                                                                                                | 31.7         | 299.1         |
| 1998                                                                                                                                                                                                         | 285.4                                                                                       | 195.4                                                                                                                                        | 7.4                                                                                                                  | 281.7                                                                                                 | 23.3                                                                                                   | 138.7                                                                                                  | 11.0                                                                                                               | 246.2                                                                                                  | 19.4       | 236.0                                                         | 641.1                                                                                                                                                                                                       | 9.5                                                                                                                                                                                        | 199.7                                                                                                                                                                                         | 17.2                                                                                                                                                                             | 610.3                                                                                                    | 8.0                                                                                                   | 186.9        | 17.1          |
| 1999                                                                                                                                                                                                         | 816.0                                                                                       | 299.3                                                                                                                                        | 96.8                                                                                                                 | 180.2                                                                                                 | 70.6                                                                                                   | 1234.8                                                                                                 | 29.2                                                                                                               | 176.5                                                                                                  | 28.8       | 534.2                                                         | 85.7                                                                                                                                                                                                        | 52.9                                                                                                                                                                                       | 172.1                                                                                                                                                                                         | 113.8                                                                                                                                                                            | 73.2                                                                                                     | 52.8                                                                                                  | 200.8        | 111.1         |
| 2000                                                                                                                                                                                                         | 75.6                                                                                        | 180.8                                                                                                                                        | 112.0                                                                                                                | 39.7                                                                                                  | 46.8                                                                                                   | 115.8                                                                                                  | 23.8                                                                                                               | 42.2                                                                                                   | 30.8       | 126.5                                                         | 1.7                                                                                                                                                                                                         | 236.1                                                                                                                                                                                      | 49.1                                                                                                                                                                                          | 155.6                                                                                                                                                                            | 1.7                                                                                                      | 236.1                                                                                                 | 59.6         | 168.1         |
| 2001                                                                                                                                                                                                         | 998.0                                                                                       | 361.6                                                                                                                                        | 18.8                                                                                                                 | 262.9                                                                                                 | 14.3                                                                                                   | 63.5                                                                                                   | 3.3                                                                                                                | 57.3                                                                                                   | 2.8        | 703.5                                                         | 854.0                                                                                                                                                                                                       | 21.0                                                                                                                                                                                       | 321.8                                                                                                                                                                                         | 14.3                                                                                                                                                                             | 932.3                                                                                                    | 17.4                                                                                                  | 312.5        | 15.6          |
| 2002                                                                                                                                                                                                         | 23.6                                                                                        | 51.4                                                                                                                                         | 90.0                                                                                                                 | 43.4                                                                                                  | 127.1                                                                                                  | 8.7                                                                                                    | 37.7                                                                                                               | 25.2                                                                                                   | 38.2       | 36.5                                                          | 0.8                                                                                                                                                                                                         | 520.9                                                                                                                                                                                      | 10.3                                                                                                                                                                                          | 125.2                                                                                                                                                                            | 0.8                                                                                                      | 520.9                                                                                                 | 16.3         | 140.9         |
| 2003                                                                                                                                                                                                         | 3677.8                                                                                      | 2059.6                                                                                                                                       | 4.2                                                                                                                  | 1540.8                                                                                                | 9.8                                                                                                    | 1238.5                                                                                                 | 5.0                                                                                                                | 298.4                                                                                                  | 0.8        | 2846.3                                                        | 3204.1                                                                                                                                                                                                      | 10.3                                                                                                                                                                                       | 345.6                                                                                                                                                                                         | 6.9                                                                                                                                                                              | 2938.4                                                                                                   | 11.4                                                                                                  | 406.2        | 8.6           |
| 2004                                                                                                                                                                                                         | 89.9                                                                                        | 53.1                                                                                                                                         | 293.5                                                                                                                | 11.8                                                                                                  | 169.4                                                                                                  | 62.8                                                                                                   | 232.8                                                                                                              | 0.4                                                                                                    | 87.0       | 72.1                                                          | 95.8                                                                                                                                                                                                        | 853.5                                                                                                                                                                                      | 22.3                                                                                                                                                                                          | 562.0                                                                                                                                                                            | 108.4                                                                                                    | 882.6                                                                                                 | 23.7         | 590.3         |
| 2005                                                                                                                                                                                                         | 181.5                                                                                       | 164.3                                                                                                                                        | 6.7                                                                                                                  | 82.8                                                                                                  | 2.5                                                                                                    | 27.7                                                                                                   | 0.06                                                                                                               | 6.2                                                                                                    | 1.9        | 173.1                                                         | 296.7                                                                                                                                                                                                       | 63.1                                                                                                                                                                                       | 119.5                                                                                                                                                                                         | 52.7                                                                                                                                                                             | 324.0                                                                                                    | 68.1                                                                                                  | 102.8        | 50.2          |
|                                                                                                                                                                                                              |                                                                                             |                                                                                                                                              |                                                                                                                      |                                                                                                       |                                                                                                        |                                                                                                        |                                                                                                                    |                                                                                                        |            |                                                               | 270.7                                                                                                                                                                                                       |                                                                                                                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                  |                                                                                                          |                                                                                                       | 102.0        |               |
| Year                                                                                                                                                                                                         | OHS30A                                                                                      | OHS31A                                                                                                                                       | OHF30A                                                                                                               | OHF31A                                                                                                | BOHS30A                                                                                                | BOHS31A                                                                                                | BOHF30A                                                                                                            | BOHF31A                                                                                                | PAF30A     | PAF31A                                                        | ILP40A                                                                                                                                                                                                      | ILP41A                                                                                                                                                                                     | OLP40A                                                                                                                                                                                        | OLP41A                                                                                                                                                                           | NYF40A                                                                                                   | NYF41A                                                                                                |              |               |
|                                                                                                                                                                                                              | OHS30A                                                                                      | OHS31A                                                                                                                                       | OHF30A                                                                                                               |                                                                                                       |                                                                                                        |                                                                                                        |                                                                                                                    |                                                                                                        |            |                                                               | ILP40A                                                                                                                                                                                                      | ILP41A                                                                                                                                                                                     | OLP40A                                                                                                                                                                                        | OLP41A                                                                                                                                                                           |                                                                                                          |                                                                                                       |              |               |
| 1980                                                                                                                                                                                                         | OHS30A<br>-<br>-                                                                            | OHS31A<br>-<br>-                                                                                                                             | OHF30A<br>-<br>-                                                                                                     |                                                                                                       |                                                                                                        |                                                                                                        |                                                                                                                    |                                                                                                        |            | PAF31A                                                        |                                                                                                                                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                  | NYF40A                                                                                                   |                                                                                                       |              |               |
| 1980<br>1981                                                                                                                                                                                                 | -                                                                                           | -                                                                                                                                            | -                                                                                                                    |                                                                                                       |                                                                                                        |                                                                                                        |                                                                                                                    |                                                                                                        |            | PAF31A<br>-                                                   | ILP40A<br>191.0                                                                                                                                                                                             | ILP41A<br>207.5                                                                                                                                                                            | OLP40A<br>38.1                                                                                                                                                                                | OLP41A<br>59.7                                                                                                                                                                   | NYF40A<br>-                                                                                              |                                                                                                       |              |               |
| 1980<br>1981<br>1982                                                                                                                                                                                         | -                                                                                           | -                                                                                                                                            | -                                                                                                                    |                                                                                                       |                                                                                                        |                                                                                                        |                                                                                                                    |                                                                                                        |            | PAF31A<br>-<br>-                                              | ILP40A<br>191.0<br>607.2                                                                                                                                                                                    | ILP41A<br>207.5<br>98.9                                                                                                                                                                    | OLP40A<br>38.1<br>109.8                                                                                                                                                                       | OLP41A<br>59.7<br>5.3                                                                                                                                                            | NYF40A<br>-                                                                                              |                                                                                                       |              |               |
| Year<br>1980<br>1981<br>1982<br>1983<br>1984                                                                                                                                                                 | -                                                                                           | -                                                                                                                                            | -                                                                                                                    |                                                                                                       |                                                                                                        |                                                                                                        |                                                                                                                    |                                                                                                        |            | PAF31A<br>-<br>-                                              | ILP40A<br>191.0<br>607.2<br>840.2                                                                                                                                                                           | ILP41A<br>207.5<br>98.9<br>142.3                                                                                                                                                           | OLP40A<br>38.1<br>109.8                                                                                                                                                                       | OLP41A<br>59.7<br>5.3<br>18.7                                                                                                                                                    | NYF40A<br>-                                                                                              |                                                                                                       |              |               |
| 1980<br>1981<br>1982<br>1983                                                                                                                                                                                 | -                                                                                           | -                                                                                                                                            | -                                                                                                                    |                                                                                                       |                                                                                                        |                                                                                                        |                                                                                                                    |                                                                                                        |            | PAF31A<br>-<br>-<br>-<br>-                                    | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6                                                                                                                                                                  | ILP41A<br>207.5<br>98.9<br>142.3                                                                                                                                                           | OLP40A<br>38.1<br>109.8<br>54.4                                                                                                                                                               | OLP41A<br>59.7<br>5.3<br>18.7                                                                                                                                                    | NYF40A<br>-                                                                                              |                                                                                                       |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986                                                                                                                                                         | -                                                                                           | -                                                                                                                                            | -                                                                                                                    |                                                                                                       |                                                                                                        |                                                                                                        |                                                                                                                    |                                                                                                        |            | PAF31A<br>-<br>-<br>-<br>-                                    | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1167.9<br>24.6<br>1324.5                                                                                                                                      | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2                                                                                                                             | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7                                                                                                                                                 | OLP41A<br>59.7<br>5.3<br>18.7<br>-<br>7.6                                                                                                                                        | NYF40A<br>-                                                                                              |                                                                                                       |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984                                                                                                                                                                         | -                                                                                           | -                                                                                                                                            | -                                                                                                                    |                                                                                                       |                                                                                                        |                                                                                                        |                                                                                                                    |                                                                                                        |            | PAF31A<br>-<br>-<br>-<br>-<br>-<br>-                          | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1167.9<br>24.6                                                                                                                                                | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7                                                                                                                                     | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6                                                                                                                                          | OLP41A<br>59.7<br>5.3<br>18.7<br>-<br>7.6<br>71.3                                                                                                                                | NYF40A<br>-                                                                                              |                                                                                                       |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988                                                                                                                                         | -                                                                                           | -                                                                                                                                            | -                                                                                                                    |                                                                                                       |                                                                                                        |                                                                                                        | BOHF30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                          |                                                                                                        |            | PAF31A<br>-<br>-<br>-<br>-<br>-<br>-                          | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1167.9<br>24.6<br>1324.5<br>2.8<br>269.5                                                                                                                      | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2                                                                                                                             | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6<br>122.8<br>2.6<br>476.1                                                                                                                 | OLP41A<br>59.7<br>5.3<br>18.7<br>-<br>7.6<br>71.3<br>0.9<br>206.4<br>0.7                                                                                                         | NYF40A<br>-                                                                                              |                                                                                                       |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989                                                                                                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                      | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                             | OHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                     | BOHS30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-           | BOHS31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-      | BOHF30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                            | BOHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-      |            | PAF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1167.9<br>24.6<br>1324.5<br>2.8<br>269.5<br>359.4                                                                                                             | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2<br>30.0<br>3.6<br>66.9                                                                                                      | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6<br>122.8<br>2.6<br>476.1<br>201.7                                                                                                        | OLP41A<br>59.7<br>5.3<br>18.7<br>-<br>7.6<br>71.3<br>0.9<br>206.4<br>0.7<br>37.8                                                                                                 | NYF40A<br>-                                                                                              |                                                                                                       |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990                                                                                                                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                  | -<br>-<br>-<br>-<br>-<br>-<br>-<br>52.5                                                                              | OHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>33.6                            | BOHS30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>1.3                             | BOHS31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>17.8                            | BOHF30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>51.2                                                            | BOHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>35.7   |            | PAF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1167.9<br>24.6<br>1324.5<br>2.8<br>269.5<br>359.4<br>181.6                                                                                                    | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2<br>30.0<br>3.6<br>66.9<br>31.6                                                                                              | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6<br>122.8<br>2.6<br>476.1<br>201.7<br>36.4                                                                                                | OLP41A<br>59.7<br>5.3<br>18.7<br>-<br>7.6<br>71.3<br>0.9<br>206.4<br>0.7<br>37.8<br>12.6                                                                                         | NYF40A<br>-                                                                                              |                                                                                                       |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991                                                                                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>1.9<br>11.3                                              | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                  | -<br>-<br>-<br>-<br>-<br>-<br>52.5<br>3.2                                                                            | OHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>33.6<br>48.0                    | BOHS30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>1.3<br>16.1                               | BOHS31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>17.8<br>258.1                        | BOHF30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>51.2<br>3.0                                                          | BOHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>35.7<br>45.4          |            | PAF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1167.9<br>24.6<br>1324.5<br>2.8<br>269.5<br>359.4<br>181.6<br>106.2                                                                                           | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2<br>30.0<br>3.6<br>66.9<br>31.6<br>25.7                                                                                      | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6<br>122.8<br>2.6<br>476.1<br>201.7<br>36.4<br>10.5                                                                                        | OLP41A<br>59.7<br>5.3<br>18.7<br>-<br>7.6<br>71.3<br>0.9<br>206.4<br>0.7<br>37.8<br>12.6<br>1.1                                                                                  | NYF40A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-    | NYF41A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992                                                                                                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>1.9<br>11.3<br>45.5                                      | -<br>-<br>-<br>-<br>-<br>22.7<br>166.2<br>10.4                                                                                               | -<br>-<br>-<br>-<br>52.5<br>3.2<br>68.2                                                                              | OHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHF30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>51.2<br>3.0<br>79.2                              | BOHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |            | PAF31A                                                        | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1167.9<br>24.6<br>1324.5<br>2.8<br>269.5<br>359.4<br>181.6<br>106.2<br>428.4                                                                                  | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2<br>30.0<br>3.6<br>66.9<br>31.6<br>25.7<br>24.3                                                                              | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6<br>122.8<br>2.6<br>476.1<br>201.7<br>36.4<br>10.5<br>39.6                                                                                | OLP41A<br>59.7<br>5.3<br>18.7<br>-<br>7.6<br>71.3<br>0.9<br>206.4<br>0.7<br>37.8<br>12.6<br>1.1<br>7.9                                                                           | NYF40A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>23.0 | NYF41A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>5.0                             |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993                                                                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>1.9<br>11.3<br>45.5<br>96.9                              | -<br>-<br>-<br>-<br>-<br>22.7<br>166.2<br>10.4<br>34.7                                                                                       | -<br>-<br>-<br>-<br>52.5<br>3.2<br>68.2<br>38.3                                                                      | OHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHF30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>51.2<br>3.0<br>79.2<br>67.0                 | BOHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |            | PAF31A                                                        | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1167.9<br>24.6<br>1324.5<br>2.8<br>269.5<br>359.4<br>181.6<br>106.2<br>428.4<br>180.7                                                                         | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2<br>30.0<br>3.6<br>66.9<br>31.6<br>25.7<br>24.3<br>15.4                                                                      | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6<br>122.8<br>2.6<br>476.1<br>201.7<br>36.4<br>10.5<br>39.6<br>24.5                                                                        | OLP41A<br>59.7<br>5.3<br>18.7<br>-<br>7.6<br>71.3<br>0.9<br>206.4<br>0.7<br>37.8<br>12.6<br>1.1<br>7.9<br>3.8                                                                    | NYF40A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-    | NYF41A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>5.0<br>6.2                 |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994                                                                                         | -<br>-<br>-<br>-<br>-<br>-<br>1.9<br>11.3<br>45.5<br>96.9<br>176.7                          | -<br>-<br>-<br>-<br>-<br>22.7<br>166.2<br>10.4<br>34.7<br>33.5                                                                               | -<br>-<br>-<br>-<br>52.5<br>3.2<br>68.2<br>38.3<br>35.0                                                              | OHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>17.8<br>258.1<br>6.0<br>34.7<br>33.5           | BOHF30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>51.2<br>3.0<br>79.2<br>67.0<br>39.0                   | BOHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |            | PAF31A                                                        | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1167.9<br>24.6<br>1324.5<br>2.8<br>269.5<br>359.4<br>181.6<br>106.2<br>428.4<br>180.7<br>67.0                                                                 | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2<br>30.0<br>3.6<br>66.9<br>31.6<br>25.7<br>24.3<br>15.4<br>22.9                                                              | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6<br>122.8<br>2.6<br>476.1<br>201.7<br>36.4<br>10.5<br>39.6<br>24.5<br>114.6                                                               | OLP41A<br>59.7<br>5.3<br>18.7<br>-<br>7.6<br>71.3<br>0.9<br>206.4<br>0.7<br>37.8<br>12.6<br>1.1<br>7.9<br>3.8<br>12.7                                                            | NYF40A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-    | NYF41A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>5.0<br>6.2<br>18.7         |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995                                                                                 | -<br>-<br>-<br>-<br>-<br>1.9<br>11.3<br>45.5<br>96.9<br>176.7<br>69.1                       | -<br>-<br>-<br>-<br>-<br>22.7<br>166.2<br>10.4<br>34.7<br>33.5<br>61.2                                                                       | -<br>-<br>-<br>-<br>-<br>52.5<br>3.2<br>68.2<br>38.3<br>35.0<br>26.7                                                 | OHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHF30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-             | BOHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |            | PAF31A                                                        | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1167.9<br>24.6<br>1324.5<br>2.8<br>269.5<br>359.4<br>181.6<br>106.2<br>428.4<br>180.7<br>67.0<br>3.5                                                          | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2<br>30.0<br>3.6<br>66.9<br>31.6<br>25.7<br>24.3<br>15.4<br>22.9<br>42.6                                                      | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6<br>122.8<br>2.6<br>476.1<br>201.7<br>36.4<br>10.5<br>39.6<br>24.5<br>114.6<br>5.6                                                        | OLP41A<br>59.7<br>5.3<br>18.7<br>-<br>7.6<br>71.3<br>0.9<br>206.4<br>0.7<br>37.8<br>12.6<br>1.1<br>7.9<br>3.8<br>12.7<br>27.9                                                    | NYF40A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-    | NYF41A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996                                                                         | -<br>-<br>-<br>-<br>-<br>1.9<br>11.3<br>45.5<br>96.9<br>176.7<br>69.1<br>5214.4             | -<br>-<br>-<br>-<br>-<br>22.7<br>166.2<br>10.4<br>34.7<br>33.5<br>61.2<br>8.8                                                                | -<br>-<br>-<br>-<br>-<br>52.5<br>3.2<br>68.2<br>38.3<br>35.0<br>26.7<br>330.1                                        | OHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>17.8<br>258.1<br>6.0<br>34.7<br>33.5           | BOHF30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>51.2<br>3.0<br>79.2<br>67.0<br>39.0<br>32.5<br>346.3                 | BOHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |            | PAF31A                                                        | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1324.5<br>2.8<br>269.5<br>359.4<br>181.6<br>106.2<br>428.4<br>180.7<br>67.0<br>3.5<br>48.6                                                                    | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2<br>30.0<br>3.6<br>66.9<br>31.6<br>25.7<br>24.3<br>15.4<br>22.9<br>42.6<br>5.5                                               | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6<br>122.8<br>2.6<br>476.1<br>201.7<br>36.4<br>10.5<br>39.6<br>24.5<br>114.6<br>5.6<br>167.0                                               | OLP41A<br>59.7<br>5.3<br>18.7<br>-<br>7.6<br>71.3<br>0.9<br>206.4<br>0.7<br>37.8<br>12.6<br>1.1<br>7.9<br>3.8<br>12.7<br>27.9<br>2.7                                             | NYF40A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-    | NYF41A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997                                                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>22.7<br>166.2<br>10.4<br>34.7<br>33.5<br>61.2<br>8.8<br>-                                                           | -<br>-<br>-<br>-<br>-<br>52.5<br>3.2<br>68.2<br>38.3<br>35.0<br>26.7<br>330.1<br>7.9                                 | OHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHF30A<br>-<br>-<br>-<br>-<br>-<br>-<br>51.2<br>3.0<br>79.2<br>67.0<br>39.0<br>32.5<br>346.3<br>7.0               | BOHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>35.7<br>45.4<br>8.5<br>29.9<br>8.4<br>72.7<br>10.4<br>92.4    | PAF30A     | PAF31A                                                        | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1324.5<br>2.8<br>269.5<br>359.4<br>181.6<br>106.2<br>428.4<br>180.7<br>67.0<br>3.5<br>48.6<br>18.8                                                            | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2<br>30.0<br>3.6<br>66.9<br>31.6<br>25.7<br>24.3<br>15.4<br>22.9<br>42.6<br>5.5<br>6.5                                        | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6<br>122.8<br>2.6<br>476.1<br>201.7<br>36.4<br>10.5<br>39.6<br>24.5<br>114.6<br>5.6<br>167.0<br>14.1                                       | OLP41A<br>59.7<br>5.3<br>18.7<br>-<br>7.6<br>71.3<br>0.9<br>206.4<br>0.7<br>37.8<br>12.6<br>1.1<br>7.9<br>3.8<br>12.7<br>27.9<br>2.7<br>38.2                                     | NYF40A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-    | NYF41A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998                                                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>22.7<br>166.2<br>10.4<br>34.7<br>33.5<br>61.2<br>8.8<br>-<br>10.1                                                   | -<br>-<br>-<br>-<br>-<br>52.5<br>3.2<br>68.2<br>38.3<br>35.0<br>26.7<br>330.1<br>7.9<br>105.6                        | OHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHF30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>51.2<br>3.0<br>79.2<br>67.0<br>39.0<br>32.5<br>346.3<br>7.0<br>103.0 | BOHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | PAF30A     | PAF31A                                                        | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1324.5<br>2.8<br>269.5<br>359.4<br>181.6<br>106.2<br>428.4<br>180.7<br>67.0<br>3.5<br>48.6<br>18.8<br>1054.3                                                  | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2<br>30.0<br>3.6<br>66.9<br>31.6<br>25.7<br>24.3<br>15.4<br>22.9<br>42.6<br>5.5<br>6.5<br>17.2                                | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6<br>122.8<br>2.6<br>476.1<br>201.7<br>36.4<br>10.5<br>39.6<br>24.5<br>114.6<br>5.6<br>167.0<br>14.1<br>130.8                              | OLP41A<br>59.7<br>5.3<br>18.7<br>-<br>7.6<br>71.3<br>0.9<br>206.4<br>0.7<br>37.8<br>12.6<br>1.1<br>7.9<br>3.8<br>12.7<br>27.9<br>2.7<br>38.2<br>1.4                              | NYF40A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-    | NYF41A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1995<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999                                                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>22.7<br>166.2<br>10.4<br>34.7<br>33.5<br>61.2<br>8.8<br>-<br>10.1<br>173.3                                          | -<br>-<br>-<br>-<br>-<br>52.5<br>3.2<br>68.2<br>38.3<br>35.0<br>26.7<br>330.1<br>7.9<br>105.6<br>60.1                | OHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHF30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-             | BOHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | PAF30A     | PAF31A                                                        | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1167.9<br>24.6<br>1324.5<br>2.8<br>269.5<br>359.4<br>181.6<br>106.2<br>428.4<br>180.7<br>67.0<br>3.5<br>48.6<br>18.8<br>1054.3<br>23.8                        | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2<br>30.0<br>3.6<br>66.9<br>31.6<br>25.7<br>24.3<br>15.4<br>22.9<br>42.6<br>5.5<br>6.5<br>17.2<br>104.4                       | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6<br>122.8<br>2.6<br>476.1<br>201.7<br>36.4<br>10.5<br>39.6<br>24.5<br>114.6<br>5.6<br>167.0<br>14.1<br>130.8<br>1.9                       | OLP41A<br>59.7<br>5.3<br>18.7<br>-<br>7.6<br>71.3<br>0.9<br>206.4<br>0.7<br>37.8<br>12.6<br>1.1<br>7.9<br>3.8<br>12.7<br>3.8<br>12.7<br>27.9<br>2.7<br>38.2<br>1.4<br>41.9       | NYF40A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-    | NYF41A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000                                                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                  | -<br>-<br>-<br>-<br>-<br>52.5<br>3.2<br>68.2<br>38.3<br>35.0<br>26.7<br>330.1<br>7.9<br>105.6<br>60.1<br>2.7         | OHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHF30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-             | BOHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | PAF30A     | PAF31A                                                        | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1167.9<br>24.6<br>1324.5<br>2.8<br>269.5<br>359.4<br>181.6<br>106.2<br>428.4<br>180.7<br>67.0<br>3.5<br>48.6<br>18.8<br>1054.3<br>23.8<br>2.1                 | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2<br>30.0<br>3.6<br>66.9<br>31.6<br>25.7<br>24.3<br>15.4<br>22.9<br>42.6<br>5.5<br>6.5<br>17.2<br>104.4<br>3.1                | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6<br>122.8<br>2.6<br>476.1<br>201.7<br>36.4<br>10.5<br>39.6<br>24.5<br>114.6<br>5.6<br>167.0<br>14.1<br>130.8<br>1.9<br>9.8                | OLP41A<br>59.7<br>5.3<br>18.7<br>7.6<br>71.3<br>0.9<br>206.4<br>0.7<br>37.8<br>12.6<br>1.1<br>7.9<br>3.8<br>12.7<br>27.9<br>2.7<br>38.2<br>1.4<br>41.9<br>3.1                    | NYF40A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-    | NYF41A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1990<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1994<br>1995<br>1994<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000<br>2001 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                  | -<br>-<br>-<br>-<br>-<br>52.5<br>3.2<br>68.2<br>38.3<br>35.0<br>26.7<br>330.1<br>7.9<br>105.6<br>60.1<br>2.7<br>36.0 | OHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHF30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-             | BOHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | PAF30A     | PAF31A                                                        | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1167.9<br>24.6<br>1324.5<br>2.8<br>269.5<br>359.4<br>181.6<br>106.2<br>428.4<br>180.7<br>67.0<br>3.5<br>48.6<br>18.8<br>1054.3<br>23.8<br>2.1<br>483.2        | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2<br>30.0<br>3.6<br>66.9<br>31.6<br>25.7<br>24.3<br>15.4<br>22.9<br>42.6<br>5.5<br>6.5<br>17.2<br>104.4<br>3.1<br>5.3         | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6<br>122.8<br>2.6<br>476.1<br>201.7<br>36.4<br>10.5<br>39.6<br>24.5<br>114.6<br>5.6<br>167.0<br>14.1<br>130.8<br>1.9<br>9.8<br>54.1        | OLP41A<br>59.7<br>5.3<br>18.7<br>7.6<br>71.3<br>0.9<br>206.4<br>0.7<br>37.8<br>12.6<br>1.1<br>7.9<br>3.8<br>12.7<br>27.9<br>2.7<br>38.2<br>1.4<br>41.9<br>3.1<br>1.1             | NYF40A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-    | NYF41A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1990<br>1991<br>1991<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000<br>2001<br>2002                                 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>22.7<br>166.2<br>10.4<br>34.7<br>33.5<br>61.2<br>8.8<br>-<br>10.1<br>173.3<br>231.3<br>231.3<br>27.8<br>2044.1 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                          | OHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHF30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-             | BOHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | PAF30A     | PAF31A                                                        | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1167.9<br>24.6<br>1324.5<br>2.8<br>269.5<br>359.4<br>181.6<br>106.2<br>428.4<br>180.7<br>67.0<br>3.5<br>48.6<br>18.8<br>1054.3<br>23.8<br>2.1<br>483.2<br>6.8 | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2<br>30.0<br>3.6<br>66.9<br>31.6<br>25.7<br>24.3<br>15.4<br>22.9<br>42.6<br>5.5<br>6.5<br>17.2<br>104.4<br>3.1<br>5.3<br>36.5 | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6<br>122.8<br>2.6<br>476.1<br>201.7<br>36.4<br>10.5<br>39.6<br>24.5<br>114.6<br>5.6<br>167.0<br>14.1<br>130.8<br>1.9<br>9.8<br>54.1<br>0.4 | OLP41A<br>59.7<br>5.3<br>18.7<br>-<br>7.6<br>71.3<br>0.9<br>206.4<br>0.7<br>37.8<br>12.6<br>1.1<br>7.9<br>3.8<br>12.7<br>27.9<br>2.7<br>38.2<br>1.4<br>41.9<br>3.1<br>1.1<br>1.1 | NYF40A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-    | NYF41A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |              |               |
| 1980<br>1981<br>1982<br>1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998                                                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                  | -<br>-<br>-<br>-<br>-<br>52.5<br>3.2<br>68.2<br>38.3<br>35.0<br>26.7<br>330.1<br>7.9<br>105.6<br>60.1<br>2.7<br>36.0 | OHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHS31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | BOHF30A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-             | BOHF31A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | PAF30A     | PAF31A                                                        | ILP40A<br>191.0<br>607.2<br>840.2<br>142.6<br>1167.9<br>24.6<br>1324.5<br>2.8<br>269.5<br>359.4<br>181.6<br>106.2<br>428.4<br>180.7<br>67.0<br>3.5<br>48.6<br>18.8<br>1054.3<br>23.8<br>2.1<br>483.2        | ILP41A<br>207.5<br>98.9<br>142.3<br>-<br>73.7<br>138.7<br>41.2<br>30.0<br>3.6<br>66.9<br>31.6<br>25.7<br>24.3<br>15.4<br>22.9<br>42.6<br>5.5<br>6.5<br>17.2<br>104.4<br>3.1<br>5.3         | OLP40A<br>38.1<br>109.8<br>54.4<br>-<br>275.7<br>3.6<br>122.8<br>2.6<br>476.1<br>201.7<br>36.4<br>10.5<br>39.6<br>24.5<br>114.6<br>5.6<br>167.0<br>14.1<br>130.8<br>1.9<br>9.8<br>54.1        | OLP41A<br>59.7<br>5.3<br>18.7<br>7.6<br>71.3<br>0.9<br>206.4<br>0.7<br>37.8<br>12.6<br>1.1<br>7.9<br>3.8<br>12.7<br>27.9<br>2.7<br>38.2<br>1.4<br>41.9<br>3.1<br>1.1             | NYF40A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-    | NYF41A<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |              |               |

| Geometric Means |                                                                         |
|-----------------|-------------------------------------------------------------------------|
| Abbreviation    | Series                                                                  |
| ONTS10G         | Ontario Management Unit 1 summer age 0 geometric                        |
| OHS10G          | Ohio Management Unit 1 summer age 0 geometric                           |
| OHS11G          | Ohio Management Unit 1 summer age 1 geometric                           |
| OHF10G          | Ohio Management Unit 1 fall age 0 geometric                             |
| OHF11G          | Ohio Management Unit 1 fall age 1 geometric                             |
| USS10G          | USGS Management Unit 1 summer age 0 geometric                           |
| USS11G          | USGS Management Unit 1 summer age 1 geometric                           |
| USF10G          | USGS Management Unit 1 fall age 0 geometric                             |
| USF11G          | USGS Management Unit 1 fall age 1 geometric                             |
| ONOHP10G        | Ontario/Ohio Management Unit 1 summer age 0 geometric                   |
| OHS20G          | Ohio Management Unit 2 summer age 0 geometric                           |
| OHS21G          | Ohio Management Unit 2 summer age 1 geometric                           |
| OHF20G          | Ohio Management Unit 2 fall age 0 geometric                             |
| OHF21G          | Ohio Management Unit 2 fall age 1 geometric                             |
| BOHS20G         | Ohio Management Unit 2 summer age 0 geometric (blocked by depth strata) |
| BOHS21G         | Ohio Management Unit 2 summer age 1 geometric (blocked by depth strata) |
| BOHF20G         | Ohio Management Unit 2 fall age 0 geometric (blocked by depth strata)   |
| BOHF21G         | Ohio Management Unit 2 fall age 1 geometric (blocked by depth strata)   |
| OHS30G          | Ohio Management Unit 3 summer age 0 geometric                           |
| OHS31G          | Ohio Management Unit 3 summer age 1 geometric                           |
| OHF30G          | Ohio Management Unit 3 fall age 0 geometric                             |
| OHF31G          | Ohio Management Unit 3 fall age 1 geometric                             |
| BOHS30G         | Ohio Management Unit 3 summer age 0 geometric (blocked by depth strata) |
| BOHS31G         | Ohio Management Unit 3 summer age 1 geometric (blocked by depth strata) |
| BOHF30G         | Ohio Management Unit 3 fall age 0 geometric (blocked by depth strata)   |
| BOHF31G         | Ohio Management Unit 3 fall age 1 geometric (blocked by depth strata)   |
| PAF30G          | Pennsylvania Management Unit 3 fall age 0 geometric                     |
| PAF31G          | Pennsylvania Management Unit 3 fall age 1 geometric                     |
| ILP40G          | Inner Long Point Bay Management Unit 4 age 0 geometric                  |
| ILP41G          | Inner Long Point Bay Management Unit 4 age 1 geometric                  |
| OLP40G          | Outer Long Point Bay Management Unit 4 age 0 geometric                  |
| OLP41G          | Outer Long Point Bay Management Unit 4 age 1 geometric                  |
| NYF40G          | New York Management Unit 4 fall age 0 geometric                         |
| NYF41G          | New York Management Unit 4 fall age 1 geometric                         |

Appendix Legend. Lakewide trawl index series names and codes used in the Appendix.

## Appendix Legend (continued)

| Arithmetic Means |                                                                          |
|------------------|--------------------------------------------------------------------------|
| Abbreviation     | Series                                                                   |
| ONTS10A          | Ontario Management Unit 1 summer age 0 arithmetic                        |
| OHS10A           | Ohio Management Unit 1 summer age 0 arithmetic                           |
| OHS11A           | Ohio Management Unit 1 summer age 1 arithmetic                           |
| OHF10A           | Ohio Management Unit 1 fall age 0 arithmetic                             |
| OHF11A           | Ohio Management Unit 1 fall age 1 arithmetic                             |
| USS10A           | USGS Management Unit 1 summer age 0 arithmetic                           |
| USS11A           | USGS Management Unit 1 summer age 1 arithmetic                           |
| USF10A           | USGS Management Unit 1 fall age 0 arithmetic                             |
| USF11A           | USGS Management Unit 1 fall age 1 arithmetic                             |
| ONOHP10A         | Ontario/Ohio Management Unit 1 summer age 0 arithmetic                   |
| OHS20A           | Ohio Management Unit 2 summer age 0 arithmetic                           |
| OHS21A           | Ohio Management Unit 2 summer age 1 arithmetic                           |
| OHF20A           | Ohio Management Unit 2 fall age 0 arithmetic                             |
| OHF21A           | Ohio Management Unit 2 fall age 1 arithmetic                             |
| BOHS20A          | Ohio Management Unit 2 summer age 0 arithmetic (blocked by depth strata) |
| BOHS21A          | Ohio Management Unit 2 summer age 1 arithmetic (blocked by depth strata) |
| BOHF20A          | Ohio Management Unit 2 fall age 0 arithmetic (blocked by depth strata)   |
| BOHF21A          | Ohio Management Unit 2 fall age 1 arithmetic (blocked by depth strata)   |
| OHS30A           | Ohio Management Unit 3 summer age 0 arithmetic                           |
| OHS31A           | Ohio Management Unit 3 summer age 1 arithmetic                           |
| OHF30A           | Ohio Management Unit 3 fall age 0 arithmetic                             |
| OHF31A           | Ohio Management Unit 3 fall age 1 arithmetic                             |
| BOHS30A          | Ohio Management Unit 3 summer age 0 arithmetic (blocked by depth strata) |
| BOHS31A          | Ohio Management Unit 3 summer age 1 arithmetic (blocked by depth strata) |
| BOHF30A          | Ohio Management Unit 3 fall age 0 arithmetic (blocked by depth strata)   |
| BOHF31A          | Ohio Management Unit 3 fall age 1 arithmetic (blocked by depth strata)   |
| PAF30A           | Pennsylvania Management Unit 3 fall age 0 arithmetic                     |
| PAF31A           | Pennsylvania Management Unit 3 fall age 1 arithmetic                     |
| ILP40A           | Inner Long Point Bay Management Unit 4 age 0 arithmetic                  |
| ILP41A           | Inner Long Point Bay Management Unit 4 age 1 arithmetic                  |
| OLP40A           | Outer Long Point Bay Management Unit 4 age 0 arithmetic                  |
| OLP41A           | Outer Long Point Bay Management Unit 4 age 1 arithmetic                  |
| NYF40A           | New York Management Unit 4 fall age 0 arithmetic                         |
| NYF41A           | New York Management Unit 4 fall age 1 arithmetic                         |



Appendix Figure 1. Patterns of residuals by gear and age from ADMB for Management Unit 1.



Appendix Figure 2. Patterns of residuals by gear and age from ADMB for Management Unit 2.



Appendix Figure 3. Patterns of residuals by gear and age from ADMB for Management Unit 3.



Appendix Figure 4. Patterns of residuals by gear and age from ADMB for Management Unit 4.