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Great Lakes Prey Fish Populations:  
A Cross-Basin Overview of Status and Trends 
Based on Bottom Trawl Surveys, 1978-20161 

Owen T. Gorman 

U.S. Geological Survey 
Great Lakes Science Center 

Ann Arbor, MI  48105 

Introduction 

Assessments of Great Lakes prey fishes have been conducted annually with bottom trawls since the 1970s by 
the Great Lakes Science Center and in some lakes in cooperation with partner agencies.  These assessments 
provide data on the status and trends of prey fishes that are consumed by important commercial and recreational 
fishes.  Although all these annual surveys are conducted using bottom trawls, they differ among the lakes in the 
proportion of the lake covered (Figure 1), seasonal timing, trawl gear used, and the manner in which the trawl is 
towed (across or along bottom contours).  To reduce potential bias associated with different sampling designs, 
population indices for prey fish were standardized to the highest value for a time series within each lake for the 
following species: Cisco (Coregonus artedi), Bloater (C. hoyi), Rainbow Smelt (Osmerus mordax), Alewife 
(Alosa pseudoharengus), and Round Goby (Neogobius melanostomus).  In this report, standardized population 
indices are presented in graphical form along with synopses to provide a short, informal cross-basin summary of 
the status and trends for principal prey fishes.  

Methods 

For lakes Superior, Huron, Michigan and Ontario, standardized relative indices of biomass for age-1 and older 
fishes (Cisco, Bloater, Alewife, Rainbow Smelt) were calculated as the observed value divided by the maximum 
value observed over a 1978-2016 times series.  For Round Goby, standardized relative indices for age-0 and 
older fishes were calculated from biomass for all lakes but Erie where the relative index was based on available 
density data.  Thus, cross-lake trends in Round Goby were represented by measures of relative abundance.   

For each lake, standardized relative indices of density of the juveniles of each species present (Cisco, Bloater, 
Alewife, Rainbow Smelt) were calculated as the observed value divided by the maximum value observed over 
the 1978-2016 times series.  In each lake, densities of juvenile age-classes that best predicted the magnitude of 
future recruitment are used to index year-class strengths.  Differences in the timing of surveys across lakes and 
differences in methodology used to distinguish juvenile age classes resulted in adopting different age-classes 
(e.g., age-0, age-1, age-3) to index year-class strength for each species and lake.  Year-class strengths were 
based on age-correlated size classes of Cisco, Bloater, and Rainbow Smelt in Lake Superior and Alewife in 
Lake Michigan.  For other species and lakes, age-classes were assigned based on fish length cut-offs.   

The Kendall coefficient of concordance (W) was calculated to determine if the time series of relative abundances 
for a given species was statistically “concordant” across 2 or more lakes.  W can range from 0 (complete 
discordance or disagreement) to 1 (complete concordance or agreement).  Concordance can be expressed as 

1 Presented at:  Great Lakes Fishery Commission, Lake Committees Meeting, 20-24 March 2017. The data 
associated with this report have not received final approval by the U.S. Geological Survey (USGS) and are currently 
under review. The Great Lakes Science Center is committed to complying with the Office of Management and Budget 
data release requirements and providing the public with high quality scientific data. 
We plan to make all USGS research vessel data collected between 1958 and 2016 publicly available from the GLSC 
website later in 2017. The anticipated citation will be http://doi.org/10.5066/F75M63X0.  Please direct any immediate 
questions to our Information Technology Specialist, Scott Nelson, at snelson@usgs.gov. 
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either a fraction or percent.  A smaller P-value for W indicates a greater probability of agreement in comparison 
of trends.   

When making statistical comparisons of trends among lakes, data were restricted to years when all or a group of 
lakes were sampled.  For all lakes, data from 1992, 1993, 1998, and 2000 were omitted from statistical 
comparisons because missing or atypical data were collected in one or more lakes.  Comparisons with Lake Erie 
were restricted to 1990-2016, years when multi-agency surveys with a consistent sample design were conducted.  
Assessment of cross-basin trends for Round Goby begins with 1994, the first year that these fish were detected 
in bottom trawl surveys in the Great Lakes. 

Figure 1. – Array of bottom trawl sampling locations for prey fish surveys in the Great Lakes used in this report.  Records 
of biomass of age-1 and older fish and densities of age-0, age-1 and age-3 fish used for indexing year classes from these 
locations were used for cross-lake comparisons.  

Results 
Relative Biomass, Prey Fish 

Relative combined biomass of pelagic prey fish (Cisco, Bloater, Rainbow Smelt, Alewife) in lakes Superior, 
Michigan, Huron and Ontario for the 1978-2016 time series trended downward, but were weakly concordant 
(Fig. 2; W = 0.42; P < 0.01).  However, there were no pair-wise agreements in trends with Ontario and other 
lakes (P > 0.72).  When the comparison is limited to lakes Superior, Michigan and Huron, the concordance in 
trends increases substantially (W = 0.79; P < 0.0001).  Comparisons of combined prey fish biomass with Lake 
Erie over 1990-2016 were not concordant (W = 0.21; P > 0.40). 

Composition of the prey fish assemblages in the lakes varied over the time series.  In Lake Superior, Rainbow 
Smelt dominated the assemblage early in the time series and following resurgence of coregonids in the early 
1980s, Cisco and Bloater dominated the assemblage thereafter.  Early in the Lake Michigan time series, Alewife 
dominated the assemblage and Bloater dominated the assemblage through the late 1990s.  Although Rainbow 
Smelt resurged in the early 1980s, they were a relatively minor component of the Michigan assemblage through 
the mid-1990s and declined to low levels thereafter.  In the 2000s, Round Goby became a minor component of 
the assemblage and by 2015 Rainbow Smelt and Alewife reached very low levels.  Trends in the Lake Huron 
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prey fish assemblage contrasted somewhat with that of Michigan.  Alewife and Rainbow Smelt dominated the 
assemblage through the 1990s, though Bloater became an important component of the assemblage in the 1990s 
following resurgence in the early 1980s.  After 2002, prey fish biomass declined sharply.  Following a nadir in 
2008, the prey fish assemblage recovered somewhat but Bloater now dominated the assemblage, the result of 
recruitment from a succession of new cohorts.  By 2013, Alewife and Rainbow Smelt had become rare 
components of the prey fish assemblage.  The Lake Ontario prey fish assemblage was consistently dominated by 
Alewife over the time series.  Rainbow Smelt, a minor component in the assemblage, declined to low levels 
after 2000 while Round Goby became a minor component of the assemblage. Without the provisional correction 
applied to data after 1996, the biomass trend in Ontario was downward through the time series (dashed line, 
Figure 2).  In Lake Erie, Rainbow Smelt was the dominant component of the prey fish assemblage over the 
1990-2016 time series.  Following the appearance of Round Goby in the mid-1990s, this species expanded to 
become a co-dominant component of the assemblage through 2008.  Afterwards, abundance of Rainbow Smelt 
increased relative to Round Goby.  

Figure 2. – Standardized indices of total biomass of pelagic prey fish (Cisco, Bloater, Rainbow Smelt, Alewife, and Round 
Goby) in lakes Superior, Michigan, Huron and Ontario for 1978-2016 and 1990-2016 for Lake Erie.  Dashed line in the 
Lake Ontario panel shows total predicted total relative prey fish biomass without application of corrections after 1996 
(Weidel et al. 2017a ,b).  

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

St
an

da
rd

ize
d 

In
de

x

Year

Lake Superior
Bloater

Cisco

Smelt

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

St
an

da
rd

ize
d 

In
de

x

Year

Lake Michigan
Bloater

Alewife

Smelt

Goby

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

St
an

da
rd

ize
d 

In
de

x

Year

Lake Huron
Bloater

Alewife

Smelt

Goby

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

St
an

da
rd

ize
d 

In
de

x

Year

Lake Erie
Smelt

Goby

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

19
78

19
80

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

20
12

20
14

20
16

St
an

da
rd

ize
d 

In
de

x

Year

Lake Ontario Alewife
Smelt
Goby

3



Figure 3. – Standardized indices of biomass for age-1 and older coregonids (Cisco in lakes Superior and Ontario and 
Bloater in lakes Superior, Michigan, and Huron), 1978-2016.   

Relative Biomass, Age-1 and Older Coregonids 

Trends in relative biomass of age-1 and older coregonids (Cisco in Lake Superior and Bloater in lakes Superior, 
Michigan, and Huron) among the 1978-2016 time series were significantly concordant (Fig. 3; W = 0.67; P < 
0.0001).  Although Cisco is a rare species in Lake Ontario (maximum mean biomass, density, 1986: 0.89 kg/ha; 
0.08 fish/ha; minimums are zero), it was regularly captured in low numbers throughout the time series.  When 
the Lake Ontario Cisco relative biomass trends are included in a comparison of trends in the lakes, the trends 
remain significantly concordant (Fig. 3; W = 0.56; P < 0.0001), but is not concordant with the trend in Lake 
Superior Cisco (P > 0.21).  Comparison of trends in biomass of Bloater in lakes Superior, Michigan, Huron, 
showed significant concordance (W = 0.65; P < 0.001).  Trends in Cisco and Bloater biomass in Lake Superior 
showed strong agreement (r = 0.72, P < 0.01).   

In all four lakes, coregonid biomass reached peak levels in the late 1980s through the early 1990s.  Afterwards, 
coregonid biomass declined and reached historically low levels in lakes Superior and Michigan in 2007-2011.  
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Cisco biomass in Lake Ontario was initially higher than in other lakes (before 1982) and declined sooner (after 
1992) than in the other lakes, a difference that contributed to a lack of concordance with other lakes.  In 
difference to trends in the other lakes, biomass of Bloater in Lake Huron rebounded following a record low in 
2008 to 75% of peak biomass in 2012, due to the recruitment and growth of strong 2005 and 2007 and moderate 
2008 and 2011 year-classes (Figs. 3, 7).  Although Huron’s Bloater biomass has trended downward since the 
2012 peak, recruitment from a record 2013 year class and moderate 2014 and 2015 year classes may boost 
future biomass.  Bloater were absent from survey catches in lakes Erie and Ontario, and Cisco were rarely 
encountered in lakes Michigan, Huron, and Erie. 

Figure 4. – Standardized indices of biomass for age-1 and older Alewife in lakes Superior, Michigan, Huron, and Ontario, 
1978-2016.  Dashed line in the Ontario panel shows predicted relative biomass without application of provisional 
corrections to data after 1996.  

Relative Biomass, Age-1 and older Alewife 

Trends in relative biomass of age-1 and older Alewife across lakes Superior, Michigan, and Huron were 
variable, though biomass was generally higher early in the time series and lower in more recent years (Fig. 4).  
For these three lakes, there was strong concordance (W = 0.73; P < 0.0001) among the 1978-2016 time series.  
There was no concordance in trends of Alewife in Lake Ontario and other lakes (Fig. 4; W < 0.5; P > 0.5).  A 
change in depth distribution of Alewife in Ontario after 1996 necessitated a correction in estimated biomass; a 
provisional correction was implemented for the 2016 analysis (Weidel et al. 2017a,b).    

In Lake Michigan, biomass of Alewife was high in the late 1970s and rapidly declined to lower levels by the 
mid-1980s.  After a minor peak in 2002, the result of recruitment of the extremely large 1998 year-class, 
Alewife biomass remained relatively low during the late 1980s, 1990s, and early 2000s.  After 2002, Alewife 
biomass continued to decline but the trend was punctuated by a minor peak in 2013 that was due to a very large 
Alewife catch at the 9-m station at Saugatuck (Madenjian et al. 2014).  Consequently, there was a high degree of 
uncertainty associated with this 2013 observation, which was resolved by sharp declines afterwards, reaching 
near-zero in 2015 and 2016.  In Lake Huron, biomass of Alewife was high in the beginning of the time series, 
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declined to low levels in the mid-1980s, but unlike Lake Michigan, fluctuated widely in the late 1980s – mid 
1990s with peaks in 1987 and 1994 and an intervening low in 1990-1991.  After 1994, biomass declined to 18% 
of peak abundance in 1996, rebounded to 36% in 2002 and afterwards declined to near-zero levels in 2004-
2011, 2013-2014, zero in 2015, and near zero in 2016.  Following the application of provisional corrections to 
data collected after 1996, Alewife biomass in Lake Ontario appeared to be highly variable with no apparent 
trend.  To put the trends in Alewife abundance in lakes Michigan, Huron and Ontario in perspective, it should be 
noted that during the mid-1960s Alewife abundances were much higher than shown in the current time series 
(Madenjian et al, 2005).  Although Alewife is a rare species in Lake Superior, the pattern of biomass decline 
followed that of other Great Lakes; once Lake Trout populations were fully recovered in the late 1990s, relative 
biomass has remained low.  For Lake Superior, maximum reported Alewife biomass and density, 1978: 0.14 
kg/ha and 0.01 fish/ha; minimums are zero.  Survey data for Alewife in Lake Erie were not available for this 
comparison. 

Figure 5. – Standardized indices of biomass for age-1 and older Rainbow Smelt in lakes Superior, Michigan, Huron, and 
Ontario, 1978-2016.   

Relative Biomass, Age-1 and Older Rainbow Smelt 

Age-1 and older Rainbow Smelt in lakes Superior, Michigan, Huron, and Ontario showed a highly concordant 
trend of fluctuating but declining relative biomass during 1978-2016 (Fig. 5; W = 0.80; P < 0.0001).  In Lake 
Superior, biomass was at or near-record lows in 2002-2004, recovered to 15% of peak biomass by 2006, and 
then declined afterwards, reaching near-record lows in 2012, 2013, 2016 and a record low in 2015.  Similarly, 
biomass in Lake Michigan was near record lows during 2001-2003, rose nearly 4-fold in 2005, and then 
declined to record lows in 2012-2014, 2016 and near-zero in 2015.  Mirroring the Michigan pattern, biomass in 
Lake Huron declined to near-record lows in 2002-2003, increased to 13% in 2004 and then declined to record 
lows in 2008-2009, but differing from the Michigan pattern, biomass increased to 6-8% of peak biomass in 
2010-2012.  Then in 2013-2014, biomass dropped again, reaching a record low in 2015 and recovering slightly 
in 2016.  A similar pattern was observed in Lake Ontario where biomass reached a near-record lows in 2006-
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2009 and was followed by a weak recovery 2010, and decline to near record lows in 2014-2016.  Survey data for 
age-1 and older Rainbow Smelt in Lake Erie were not available for this comparison.  

Relative Abundance, Age-0 and older Round Goby 

Weak agreement in trends in relative abundance of age-0 and older Round Goby (W = 0.46; P = 0.01) was 
observed among lakes where this species has become established (lakes Michigan, Huron, Erie, and Ontario; 
Fig. 6).  Increased agreement in trends among lakes was hindered by the desynchronized expansion of Round 
Goby populations.  The first records occurred in Lake Erie, followed by Lake Huron and then by lakes Ontario 
and Michigan.  Following several peaks in 2001, 2004, and 2007, relative abundance of Round Goby in Lake 
Erie in 2010-2016 declined to the lowest levels since the initial stages of expansion but was punctuated by small 
peaks in 2011 and 2015; this pattern is suggestive of nearing equilibrium.  After what appears to have been a 
similar pattern of expansion and decline in Lake Huron, relative abundance of Round Goby spiked to record 
levels in 2011 and 2012 and then declined > 90% thereafter.  The peak in relative abundance of Round Goby 
observed in 2013 in Lake Michigan was followed by ≥ 90% decline afterwards.  Round Goby relative 
abundance in Lake Ontario was highly variable over the time series; after initial detection in 2003, abundance 
increased rapidly, peaking in 2006 but then underwent a series of peaks and declines thereafter.  Round Goby 
relative abundance showed a considerable year-to-year variability in lakes Michigan, Huron, and Ontario, 
suggesting that impending population equilibrium remains uncertain.  Round Goby have not been caught in 
annual bottom trawl surveys in Lake Superior.  

Figure 6. – Standardized indices of abundance for Round Goby in lakes Michigan, Huron, Ontario, and Erie, 1994-2016.  
Indices are computed from number caught in Lake Erie and weight caught in all other lakes.   

Year-Class Strengths, Coregonids 

Trends in relative strengths of 1977-2015 coregonid year-classes showed weak to moderate agreement (W = 
0.47; P = 0.001) among lakes Superior, Michigan, and Huron (Fig. 7).  Superior Cisco and Bloater trends were 
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highly correlated (W =0.83; P < 0.01).  Restricting the comparison to Superior vs. Michigan Bloater yielded 
strong agreement (W = 0.80; P = 0.01); no other inter-lake comparisons showed significant agreement.   

Lakes Superior, Huron and Michigan shared a common pattern of stronger year-classes in the 1980s and weaker 
year-classes in the 1990s.  Lake Superior was unique in have moderate year-classes of coregonids in 1998 and 
2003.  Trends in relative year-class strengths of coregonids among these lakes showed higher concordance 
before the advent of a succession of strong and moderate year-classes in Lake Huron after 2004 (1977-2004; W 
= 0.57; P < 0.0004).  The appearance of small 2014 and 2015 Bloater year classes in Lake Superior is notable as 
is the appearance of a moderate 2016 Bloater year class in Lake Michigan.  Bloater were absent from survey 
catches in lakes Erie and Ontario and Cisco are rarely encountered outside of Lake Superior.   

Figure 7. – Standardized indices of densities for age ≤ 1 Ciscoes (Cisco and Bloater) in lakes Superior, Michigan, and 
Huron, 1977-2016 year classes.  

Year-Class Strengths, Alewife 

Using relative abundances of Alewife at age-3 in Lake Michigan, age-0 in Lake Huron, and age-1 in Lake 
Ontario (the accepted age groups for indexing year-class strengths in these lakes), there was no agreement in 
trends (W = 0.38; P = 0.56) among the 1977-2013 year-classes (Fig. 8).  Agreement remained nonsignificant 
when relative abundances of Alewife at age-0 in Lake Michigan (1977-2015 year classes) were substituted in 
the comparison (W = 0.40; P = 0.20).  But when this comparison limited to Michigan and Huron 1977-2015 age-
0 year classes, there was significant agreement in trends (W = 0.75; P = 0.03).  However, this concordance is 
likely an artifact of decreased catchability of age-0 Alewife in Michigan after 1990, due in part to shifting fall 
sampling to an earlier date (Madenjian et al. 2005).  Low abundances of age-0 Alewife in Huron after 2003 can 
be explained by very low abundances of adults after 2004 (Figure 4).  Declines in adult Alewife biomass in 
Michigan after 2013 will likely lead to very low abundances of juveniles in the future.  No other inter-lake 
comparisons showed agreement in trends.  Alewife densities were too low in Lake Superior to assess year-class 
strengths.  
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Trends in abundances of age-0 fish in lakes Michigan were higher but variable prior to 1991 and afterwards 
fluctuated about near-zero levels.  As mentioned previously this decline was likely the result of a shift in fall 
sampling to an earlier date when age-0 fish were smaller and less vulnerable to bottom trawls.  Trends in 
abundance of age-3 Alewife in Michigan remained variable over the time series with spikes in 1998 and 2010 
and ending with three successive years of very low abundances in 2011-2013.  Trends in abundance of age-0 
fish in Huron were variable until 2003 when a record year-class appeared; afterwards abundances were low and 
fluctuated about near-zero levels.  As noted previously, this shift appears tied to the near-disappearance of adult 
Alewife in Huron in 2004.   Trends in year-class strengths in Ontario were variable with no discernible trends, 
although the application of provisional corrections to data after 1996 resulted in reduced relative densities of 
year-class strengths prior to 1997 (Figure 8).  However, beginning with the record 1998 year class, a series of 
near-record year classes were produced in 2005, 2009, 2012.  Alewife is a rare species in Lake Superior and 
survey data for Lake Erie were not available for this comparison.   

Comparisons of densities of different ages of juvenile Alewife are problematic because abundances at age-0, 
age-1, and age-3 are affected by differential survivorship, and as mentioned, the timing of sampling of age-0 fish 
can greatly affect their vulnerability to bottom trawls.  For this reason age-3 Alewife are used to assess year 
class strengths in Lake Michigan (Madenjian et al. 2005, 2015).  Thus it is not surprising that comparison of 
trends in relative abundances of juvenile Alewife across the three lakes showed no agreement when mixed ages 
were considered.   

Figure 8. – Standardized indices of Alewife densities measured at age 0, 1 or 3 in lakes Michigan, Huron, and Ontario, 
1977-2016 year classes.  Dashed line in the Lake Ontario panel shows predicted relative densities without application of 
provisional corrections to data after 1996 (Weidel et al. 2017a, b). 
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Year-Class Strengths, Rainbow Smelt 

Trends in relative strengths of Rainbow Smelt year-classes across lakes Superior, Michigan, Huron, and Ontario 
from 1977 to 2015 showed weak but significant agreement (Fig. 9; W = 0.38; P < 0.03).  When the comparison 
was limited to lakes Superior, Michigan, and Huron, the agreement was nonsignificant (W = 0.39; P = 0.24).  
Paired comparisons among the lakes showed agreement between lakes Superior and Michigan (W = 0.79; P < 
0.02), Superior and Ontario (W = 0.77; P < 0.03), and Michigan and Ontario (W = 0.67 P < 0.09).    

Figure 9. – Standardized indices of Rainbow Smelt densities measured at age-1 in lakes Superior and Ontario and at age 
<=1 in lakes Michigan, Huron and Erie, 1977-2016 year classes.   

In Lake Superior, year-class strengths of Rainbow Smelt varied from moderate to strong during 1977-1996, 
subsequently declined to weak levels in 1999-2002, and varied from weak to moderate in 2003-2009 and 
reached a record low in 2011 and near-record lows in 2010 and 2013-2014.  In Lake Michigan, year-class 
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strengths declined steadily from 1980 to 2001; afterwards the downward trend was punctuated by moderately 
strong year-classes in 2005 and 2008, and achieved a near-record low in 2007 and a record low in 2014.  A 
small uptick to 8% of maximum was achieved in 2016.  In contrast, year-class strengths in Lake Huron were 
moderate to weak over the first 21 years of the 37-year time series, and beginning with 1999 an alternating a 
series of moderate to strong and weak year classes emerged; 2005 marked the strongest year class and 2010 and 
2016 marked the weakest year classes on record.  In Lake Ontario, year-class strengths prior to 1999 exhibited a 
“saw-tooth” pattern caused by alternating strong and weak year-classes.  This pattern was not discernible during 
1999-2015 due to a succession of weak year classes punctuated by moderate year classes in 2003 and 2011.   

Summary 

Among lakes Superior, Huron, Michigan, and Ontario, there was agreement in the trends of age-1 and older 
biomass for all prey species, however, prey fish biomass trends in Ontario were not concordant with other lakes.  
That discord follows the application of a provisional correction in 2016 to Lake Ontario prey fish biomass data 
collected after 1996; in prior cross-basin reports there was general concordance in trends in prey fish biomass 
with lakes Superior, Michigan and Huron. When trends for individual species among the lakes are compared, 
the concordance was greatest for coregonids and Rainbow Smelt, and weak concordance for Alewife.  For 
coregonids, the highest biomass occurred from the late 1980s to the early 1990s and relatively low biomass after 
2000 (with Huron as the exception).  Rainbow Smelt biomass declined slowly and erratically during the last 
quarter century and reached record low levels in the 2000s.  In general, Alewife biomass in lakes Huron and 
Michigan was substantially higher during the 1980s and 1990s compared with the post-2003 era, when biomass 
declined to record low levels.  In contrast, Alewife biomass in Lake Ontario was highly variable but without an 
evident trend.  This result for Lake Ontario also contrasts with previous reports and comes as the result of 
applying a provisional correction in 2016 to prey fish data collected after 1996 (Weidel et al. 2017a, b). 

Recently, Lake Huron has shown resurgence in Bloater biomass, achieving 75% of its maximum record in 2012 
due to recruitment of a succession of strong and moderate year-classes that appeared in 2005-2011 and the 
largest on record in 2013.  With favorable recruitment of the moderate 2014-2015 year classes, biomass may be 
sustained in the near future, though the decline in recent increases in biomass remains unexplained.  Resurgence 
of Bloater in Lake Huron notwithstanding, the general concordance in population trends of Bloater and Cisco 
across the Great Lakes supports hypotheses for large-scale environmental factors influencing the synchrony of 
recruitment in Great Lakes coregonids.   

In general, trends in densities of juvenile prey fishes were less concordant than population biomass across the 
basin and only coregonids showed statistical agreement across the upper Great Lakes (data on year-class 
strengths for Lake Ontario Cisco were not available).  The appearance of strong and moderate year-classes of 
Bloater in Lake Huron in 2005-2015 countered the common trend of weak year-classes of coregonids in lakes 
Michigan and Superior.  However, the appearance of a moderate year-class of Bloater in Michigan in 2016 is the 
largest since the 1990 year-class.  There was no agreement in cross-basin trends in year-class strengths for 
Rainbow Smelt and Alewife, although there was agreement between pairs of lakes for Rainbow Smelt.   

Although there was statistical agreement in trends of age-0 and older Round Goby relative abundance among 
lakes where this species has successfully invaded (Michigan, Huron, Erie, and Ontario), temporal patterns were 
different in each lake.  Recent trends in relative abundance of gobies remain highly variable in lakes Huron, 
Michigan and Ontario, suggesting that impending population equilibrium in these lakes remains uncertain.  The 
pattern of increase, peak and decline of goby abundance in Lake Erie suggests an approaching equilibrium.  
Although the recent trends in goby abundance among these lakes is mixed, there is mounting evidence that 
Round Goby has become increasingly important in the diets of Lake Whitefish and typical piscivores, e.g., Lake 
Trout, Walleye, Smallmouth Bass, Yellow Perch, Lake Whitefish, and Burbot in lakes Michigan, Huron, Erie, 
and Ontario (He et al. 2015).  Round Goby continue to be absent from spring bottom trawl assessments in Lake 
Superior, but their presence in the harbors and embayments of Duluth and Thunder Bay (U.S. Geological 
Survey and Ontario Ministry of Natural Resources, unpublished data), suggests that there is potential for future 
colonization. 
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Abstract 
In 2016, the Lake Superior fish community was sampled with daytime bottom trawls at 76 nearshore 
and 35 offshore stations. Spring and summer water temperatures in 2016 were warmer than average and 
considerably warmer than observed in 2014 and 2015. In the nearshore zone, a total of 17,449 
individuals from 20 species or morphotypes were collected. Nearshore lakewide mean biomass was 2.2 
kg/ha, which was near the lowest biomass on record for this survey since it began in 1978. In the 
offshore zone, a total 8,487 individuals from 16 species or morphotypes were collected lakewide. 
Offshore lakewide mean biomass was 4.5 kg/ha, which was the lowest biomass recorded since the 
offshore survey began in 2011. The density of age-1 Cisco was 5.0 fish/ha, which was 35% of that 
measured in 2015. Larval Coregonus were collected in surface trawls at 144 locations lakewide from 
May to July. The average nearshore lakewide larval Coregonus density estimate was 1,630 fish/ha, 
which was similar to that estimated in 2015.  

Introduction 
The U.S. Geological Survey Lake Superior Biological Station conducts annual daytime bottom trawl 
surveys in nearshore (~15-80 m) and offshore (100-300 m) waters of Lake Superior. These surveys 
provide data for assessment of long-term trends in lakewide fish species occurrences, relative 
abundance, and biomass. Rather than absolute abundance and biomass estimates, these data have 
historically been considered population indices. Age and diet analyses are conducted for selected 
species. The nearshore survey has been conducted in spring since 1978 in U.S. waters, and since 1989 in 
Canadian waters. The offshore survey has been conducted in summer since 2011. We report population 
biomass estimates for a number of common species and recruitment indices of the density of age-1 fish 
for selected commercial and recreational species (Rainbow Smelt, Cisco, Bloater, Lake Whitefish, and 
Lake Trout, scientific names are provided in Table 1) from nearshore surveys, and population biomass 
estimates from offshore surveys. Results presented for age-1 and older fish are based solely on bottom 
trawl sampling. Fishing gear bias should be considered when interpreting the results of this survey, 
particularly for species with lower vulnerability to daytime bottom trawls, such as adult Cisco, and adult 
Lake Trout. In addition to benthic fish sampling at each station, we conducted surface trawls for larval 
fish, epilimnetic (30 m) and whole water column (100 m) zooplankton collections, and an electronic 
water profile that collected depth, temperature, specific conductance, pH, dissolved oxygen, chlorophyll 
a, photosynthetic active radiation (PAR), and beam transmission data. Herein we report on bottom and 
surface trawl collections and water temperatures.   

1Presented at:  Great Lakes Fishery Commission, Lake Superior Committee Meeting, 21 March 2017The data associated with this 
report have not received final approval by the U.S. Geological Survey (USGS) and are currently under review. The Great Lakes 
Science Center is committed to complying with the Office of Management and Budget data release requirements and providing the 
public with high quality scientific data. We plan to make all USGS research vessel data collected between 1958 and 2016 publicly 
available from the GLSC website later in 2017. The anticipated citation will be http://doi.org/10.5066/F75M63X0.  Please direct 
any immediate questions to our Information Technology Specialist, Scott Nelson, at snelson@usgs.gov.
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Methods 
Nearshore survey bottom trawling 
Nearshore sites are located around the perimeter of the lake (Figure 1). In 2016, 76 of the 82 long-term 
sampling locations were sampled between 16 May and 16 June (Figure 1). Six locations were not 
sampled due to commercial fishing operations or mechanical problems. At each location, a single 
bottom trawl tow was conducted with a 12-m Yankee bottom trawl. The median start and end depths for 
bottom trawl tows were 16 m (range 10-34 m) and 54 m (range 20-143 m), respectively. The median 
distance trawled was 1.5 km (range 0.6-4.0 km). The median trawl wingspread was 8.3 m (range 7.4-9.6 
m). Fish collections were sorted by species, counted, and weighed in aggregate to the nearest gram. 
Total length was measured on a maximum of 50 individuals per species per trawl. Length data for these 
individuals were then extrapolated to the entire catch, if necessary. Relative density (fish/ha) and 
biomass (kg/ha) were estimated by dividing sample counts and aggregate weights by the area of the 
bottom swept by each trawl tow (ha). Biomass estimates are reported for all species combined and 
individually for Burbot, Cisco, Bloater, Rainbow Smelt, Lake Whitefish, Sculpin species (Slimy 
Sculpin, Spoonhead Sculpin, and Deepwater Sculpin), and hatchery-, lean-, and siscowet Lake Trout. 
For Cisco, Bloater, Lake Whitefish, and Rainbow Smelt, age-1 year-class strength was estimated as the 
mean lakewide relative density for age-1 fish. Age-1 fish designations were based on species-specific 
lengths; Cisco <140 mm, Bloater <130 mm, Lake Whitefish <160 mm, and Rainbow Smelt <100 mm. 
Young Lake Trout densities are presented for small, < 226 mm (ca. ≤ age-3) fish. Age-1 size cutoffs 
were based on past unpublished aging analyses and are approximate and are known to vary among 
years.   

Offshore survey bottom trawling 
Offshore sites are located around the lake and were selected using a spatially-balanced, depth-weighted 
probabilistic sampling design that targets depths >90 m (Figure 1). Sample sites were selected in 2011 
and the same sites have been sampled annually thereafter. In 2016, 35 locations were sampled during 
daylight hours between 27 June and 25 July. A single bottom trawl tow was conducted at each site using 
a 12-m Yankee bottom trawl towed on-contour during daylight hours. Station depths ranged from 92 to 
315 m. The median trawl distance was 1.6 km (range 1.8-2.3 km). The median trawl wing spread was 
9.8 m (range 8.3-11.4 m). Catches were processed similarly to that described for nearshore trawls. 
Biomass estimates are presented for all species and individually for Kiyi, Deepwater Sculpin, and 
siscowet Lake Trout. These three species made up >93% of the total biomass.  

Surface water trawling 
A paired 1 m2 500 micron mesh neuston net was fished at the lake surface (0.5 m depth) for 10 minutes 
at 144 locations lakewide from 5 May to 25 July 2016. The purpose of this sampling was to describe the 
spatial distribution and abundance of larval Coregonus. Larval Coregonus were not identified to species, 
so it is assumed these fish are a mix of Cisco, Bloater, and Kiyi. In addition to Coregonus species, a few 
Sculpin and Pacific Salmon are also collected.   
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Figure 1. Location of 76 nearshore (green circles) and 35 offshore (pink circles) stations sampled May-
July 2016. Samples collected at each location included bottom trawls for demersal fish, surface trawls 
for larval fish, epilimnetic (30 m) and whole water column (100 m) zooplankton collections, and an 
electronic water profile that collected data on depth, temperature, specific conductance, pH, dissolved 
oxygen, Chl a, PAR, and beam transmission. An additional 32 locations not shown on the map were 
sampled for larval fish, zooplankton, and water profile attributes.  

Results 
Nearshore survey 
Nearshore water temperatures in 2016 were warmer than the long-term average and much warmer than 
observed in 2014 and 2015 (Figure 2a). Nearshore temperatures in June averaged 7.1 °C (range = 4.7-
14.3 °C) at the surface and 4.0 °C (range = 3.8-5.0 °C) at 100 m. The long-term average (1991-2016) 
water temperatures for these same locations and dates is 5.9 °C at the surface and 3.5 °C at 100 m.  

A total of 17,449 individual fish from 20 species or morphotypes were collected (Table 1). The number 
of species collected at each station ranged from 0 to 13, with a mean of 4.7 and median of 4. Lakewide 
mean biomass was 2.2 kg/ha, which was one of the lowest values on record and well below the long- 
term average of 9.1 kg/ha (Table 2, Figure 3). Lakewide median biomass was 0.2 kg/ha which was also 
one of the lowest values on record (Figure 3). 
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Figure 2. a) Average nearshore water temperature profiles collected in June. B) Average offshore water 
temperatures collected in July. Lines are shown for 2016, 2015, and 2014 – the coldest year on record. 
Nearshore June water temperatures have been collected since 1991 and offshore July temperatures 
since 2011. 

Figure 3. Annual mean + SE (bars, left y-axis) and median (line, right y-axis) lakewide nearshore 
biomass estimates for all fish species collected in bottom trawls from 1978-2016.   
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Figure 4.  Estimated biomass at individual nearshore sampling stations in 2016. Station locations are 
shown in Figure 1. The inset plot shows the annual skewness in the distribution of individual station 
biomass estimates.  Higher skewness values indicate greater differences in fish biomass among sampling 
locations.  

Individual station biomass was non-normally distributed and highly left-skewed (Figure 4). The 
skewness of the distribution of individual station biomass estimates in 2016 was 3.2, which was less 
than long-term mean of 3.7 (Figure 4). The highest individual station biomass was estimated for station 
76 near Cornucopia, Wisconsin.  

Cisco – Lakewide mean nearshore biomass of Cisco was 0.2 kg/ha in 2016. This was below the long-
term average of 2.4 kg/ha and similar to that observed since 2007 (Table 2). Density of age-1 Cisco was 
4.99 fish/ha in 2016, which indicated a small, but measureable recruitment year. This estimate was less 
than the 14.31 fish/ha observed in 2015. Over the course of the nearshore survey’s history, densities of 
age-1 Cisco have exceeded 30 fish/ha eight times and 175 fish/ha five times and have been measured as 
high as 750 fish/ha (Table 3). Age-1 Cisco density of 5 fish/ha has a two-year recurrence interval and 
this density has been exceeded 18 times in the 39 year survey period.  

Bloater – Lakewide mean nearshore biomass for Bloater was 0.4 kg/ha in 2016. This was below the 
long-term average of 1.7 kg/ha (Table 2). Age-1 Bloater density was 9.76 fish/ha in 2016, the highest 
density observed since 2006 (Table 3). The highest observed densities of age-1 Bloater is >30 fish/ha.  

Lake Whitefish – Lakewide mean nearshore biomass for Lake Whitefish was 0.5 kg/ha in 2016. This 
was similar to that observed in 2015 and less than the long-term average of 2.1 kg/ha (Table 2). Age-1 
Lake Whitefish density was 1.57 fish/ha in 2016, which was below the long-term average of 7.17 fish/ha 
(Table 3).  
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Rainbow Smelt – Lakewide mean nearshore biomass for Rainbow Smelt was 0.4 kg/ha in 2016. This 
was similar to that observed in 2015 and less than the long-term average of 1.2 kg/ha. Rainbow Smelt 
biomass has been less than the long-term mean since 2007 (Table 2). Age-1 Rainbow Smelt density was 
82.71 fish/ha in 2016, which was about half of the long-term average of 157 fish/ ha (Table 3).  

Sculpin – Lakewide mean nearshore biomass for Sculpin was 0.02 kg/ha in 2016. This was below the 
long-term average of 0.06 kg/ha. Sculpin biomass has not exceeded 0.06 kg/ha since 1998 (Table 2). 

Other species – The combined mean nearshore lakewide biomass for all other species was 0.3 kg/ha in 
2016. This was less than the long-term mean of 0.68 kg/ha. Species include Ninespine Stickleback, 
Trout-perch, Kiyi, Shortjaw Cisco, Pygmy Whitefish, Round Whitefish, and Longnose Sucker.  

Burbot – Lakewide mean nearshore biomass for Burbot was 0.05 kg/ha. Burbot biomass has not 
exceeded the long-term average of 0.13 kg/ha since 2008 (Table 2). 

Lake Trout – Four hatchery Lake Trout were collected during the nearshore survey. Hatchery Lake 
Trout biomass has been near zero since 2002, with the exception of 2005 (Figure 5). Lean Lake Trout 
biomass was 0.1 kg/ha. This was less than the long-term average of 0.3 kg/ha (Table 2). Siscowet Lake 
Trout nearshore biomass was 0.1 kg/ha, which was similar to the long-term average (Table 2). Densities 
of age-3 and younger lean and siscowet Lake Trout were 0.19 and 0.04 fish/ha in 2016, respectively. 
Young lean Lake Trout densities were less than the long-term average while young siscowet Lake Trout 
densities were similar to the long-term average (Table 3).   

Figure 5. Mean annual lakewide biomass estimates for hatchery, lean, and siscowet Lake Trout 
estimated from bottom trawls in nearshore locations from 1978-2016. 
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Offshore survey 
Similar to the nearshore, offshore water temperatures were warmer than average (2011-2016) and much 
warmer than observed in 2014 and 2015. Offshore temperatures in July averaged 13.2 °C (range = 7.5-
18.7 °C) at the surface and 3.9 °C (range = 3.8-4.4 °C) at 100 m (Figure 2).  

A total of 10,375 individuals from 14 species were collected lakewide at 35 offshore sites (Table 1). The 
average and median observed species richness at each station was 3.9 and 4 species, respectively, and 
ranged from 1 to 8 species. Deepwater Sculpin, Kiyi, and siscowet Lake Trout made up 93% of the total 
biomass collected in offshore waters (Figure 6). Bloater and Pygmy Whitefish were the most common 
other species collected, but both species were generally limited to depths <110 m. Mean and median 
lakewide biomass was 4.5 kg/ha and 3.0 kg/ha, respectively (Figure 7). This was less than observed in 
previous years (Figure 7).  

Figure 6.  Mean lakewide biomass estimates for Kiyi, siscowet Lake Trout, Deepwater Sculpin, and 
other species estimated from offshore bottom trawls in 2016. Pie diameter is proportional to the biomass 
collected at that site, which ranged from 0-22 kg/ha. The pie in the legend is scaled to 3.1 kg/ha with the 
size of the pies on the map scaled accordingly to that reference.  
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Figure 7.  Annual mean + SE (bars) and median (line) lakewide offshore biomass estimates for all 
species, siscowet Lake Trout, Kiyi and Deepwater Sculpin collected in bottom trawls from 2011-2016. 

Siscowet Lake Trout – Lakewide mean offshore biomass of siscowet Lake Trout was 2.5 kg/ha. This 
was similar to that observed in 2015, but generally less than previous years (Figure 7). 

Kiyi – Lakewide mean offshore biomass of Kiyi was 0.7 kg/ha. This was 50% of that observed in 2015. 
With the exception of 2013, there has been a steady decline in Kiyi biomass since 2011 (Figure 7).    

Deepwater Sculpin – Lakewide mean offshore biomass of Deepwater Sculpin was 0.9 kg/ha. This was 
54% of that estimated in 2015. Deepwater Sculpin biomass has declined steadily since 2012 (Figure 7).    

Larval Coregonus collections 
A total of 22,097 Coregonus individuals were collected from May-July 2016. The lakewide nearshore 
average density between 16 May and 16 June was 1,630 fish/ha and ranged from 0-21,910 fish/ha. For 
comparison, the lakewide nearshore mean density during these same dates in 2014 and 2015 was 1,425 
and 787 fish/ha, respectively (Figure 8a). Larval Coregonus were first collected on 4 May 2016 and 
were 9-10 mm in length. This suggests a hatch date around the first week of May, as this is the length at 
hatch observed for Cisco raised in the laboratory (Oyadomari and Auer 2008, CJFAS 65:1447-1358). 
Estimated hatch dates were mid-May in 2015 and the end of May in 2014. Growth of larval fish, as 
determined by the change in total length over time was greatest in 2016 and least in 2014 (Figure 8b). 
We suspect this was related to the earlier hatch date and warmer water in 2016 as compared to 2014 and 
2015 (Figure 2).  
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Figure 8. a) Mean daily estimated larval Coregonus densities (fish/ha) collected in 2014, 2015, and 
2016 from surface trawling. The number of locations sampled each day ranged from 1-5. b) Mean larval 
length for each trawl collected in 2014, 2015, and 2016. A maximum of 50 individuals were measured 
from each trawl. The slope of the lines were 0.1 mm per day in 2016 and 0.05 mm per day in 2014 and 
2015.   

Summary 
Over the 39-year history of the Lake Superior nearshore survey, total reported biomass has been largely 
dependent on recruitment of age-1+ Bloater, Cisco, and Lake Whitefish populations as well as survival 
of Rainbow Smelt to age-3 or older. The lack of significant recruitment of these species in recent years, 
particularly of Cisco, is of concern to fishery managers. In 2015 and 2016 we observed small but 
measureable recruitment of age-1 Cisco, Bloater, and Kiyi. Larval Coregonus density estimates in 2016 
were similar to that observed in 2015 and roughly twice that observed in 2014. Larval Coregonus 
summer growth in 2016 was twice that observed in 2014 and 2015. Time will tell if this will translate to 
a larger age-1 year class in 2017. Offshore demersal fish biomass, principally Deepwater Sculpin, Kiyi, 
and siscowet Lake Trout, was lower than that observed in previous years. The cause of this 5-year 
decline is not well understood, but may be driven by consumption of these species by large siscowet 
Lake Trout. The combination of our near- and offshore bottom and surface trawl surveys provide a 
lakewide picture of the status and trends of the Lake Superior fish community susceptible to bottom 
trawls as well as insights into Coregonus recruitment dynamics. We plan to continue these surveys into 
the future.  

Note: All GLSC sampling and handling of fish during research are carried out in accordance with 
guidelines for the care and use of fishes by the American Fisheries Society 
(http://fisheries.org/docs/wp/Guidelines-for-Use-of-Fishes.pdf). 
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Table 1. Fish species and the number of individuals collected in nearshore and offshore bottom trawl 
surveys in Lake Superior in 2016. Sampling locations shown in Figure 1.  

Fish Species name Nearshore Offshore 
Rainbow Smelt Osmerus mordax 11002 6 
Bloater Coregonus hoyi 1957 80 
Cisco Coregonus artedii 1001 3 
Pygmy Whitefish Prosopium coulteri 935 59 
Ninespine Stickleback Pungitius pungitius 821 10 
Trout-perch Percopsis omiscomaycus 496 0 
Slimy Sculpin Cottus cognatus 448 14 
Lake Whitefish Coregonus clupeaformis 347 1 
Spoonhead Sculpin Cottus ricei 117 8 
Deepwater Sculpin Myoxocephalus thompsoni 86 7044 
Lean lake Trout Salvelinus namaycush 47 1 
Shortjaw Cisco Coregonus zenithicus 45 5 
Kiyi Coregonus kiyi 43 1011 
Siscowet Lake Trout Salvelinus namaycush siscowet 37 235 
Longnose Sucker Catostomus catostomus 31 0 
Blackfin Cisco Coregonus nigripinnis 9 0 
Common Shiner Notropis cornutus 8 0 
Burbot Lota lota 7 4 
Hatchery Lake Trout Salvelinus namaycush 4 0 
Alewife Alosa pseudoharengus 3 0 
Unidentified coregonid Coregonus 5 5 
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Table 2. Lake Superior nearshore bottom trawl lakewide mean biomass (kg/ha) estimates of common 
fishes, from 1978-2016. Sculpin includes Slimy, Spoonhead, and Deepwater sculpin. Mean and median 
total biomass includes all species. Other species includes Ninespine Stickleback, Trout-Perch, Kiyi, 
Shortjaw Cisco, Pygmy Whitefish, Round Whitefish, and Longnose Sucker.  

Year Sites 
Number 

of species 

Mean 
total 

biomass 

Median 
total 

biomass 
Rainbow 

Smelt Cisco 
Lake 

Whitefish Bloater 

Hatchery 
Lake 
Trout 

Lean 
Lake 
Trout 

Siscowet 
Lake 
Trout Burbot Sculpin 

Other 
species 

1978 43 17 5.88 0.78 4.07 0.01 0.70 0.13 0.37 0.00 0.00 0.17 0.14 0.29 
1979 49 17 6.33 2.25 2.17 0.06 1.27 0.45 0.66 0.06 0.00 0.30 0.20 1.15 
1980 48 16 3.28 1.11 0.87 0.28 0.58 0.28 0.48 0.05 0.00 0.19 0.19 0.35 
1981 48 19 2.62 0.42 0.21 0.36 0.67 0.41 0.30 0.02 0.00 0.24 0.18 0.22 
1982 32 18 3.06 0.29 0.25 0.35 0.85 0.43 0.70 0.10 0.00 0.06 0.03 0.29 
1983 50 19 2.48 0.54 0.92 0.17 0.20 0.43 0.45 0.03 0.00 0.07 0.06 0.15 
1984 53 21 5.84 1.67 0.80 0.65 1.30 1.75 0.48 0.34 0.02 0.20 0.06 0.25 
1985 53 19 14.77 3.50 1.33 6.53 2.14 2.69 0.40 0.78 0.00 0.05 0.08 0.77 
1986 53 19 19.28 3.97 2.84 8.65 2.65 3.79 0.27 0.55 0.09 0.18 0.07 0.19 
1987 53 16 13.26 1.40 1.78 5.69 2.00 2.57 0.25 0.34 0.00 0.14 0.07 0.44 
1988 53 19 13.89 0.90 1.18 3.10 2.40 5.97 0.16 0.78 0.00 0.08 0.04 0.17 
1989 76 21 17.60 3.41 2.08 6.21 5.54 1.71 0.16 0.46 0.23 0.21 0.08 0.93 
1990 81 22 21.28 5.44 1.95 10.12 2.36 4.85 0.12 0.34 0.19 0.11 0.08 1.17 
1991 84 22 16.83 3.57 1.17 10.23 2.74 0.81 0.08 0.69 0.02 0.21 0.10 0.78 
1992 85 24 18.65 3.33 1.02 3.40 3.70 8.39 0.20 0.59 0.05 0.17 0.07 1.06 
1993 87 23 18.12 5.86 2.12 4.99 3.67 4.28 0.27 0.59 0.14 0.27 0.08 1.71 
1994 87 23 17.39 3.59 1.89 7.24 5.42 0.42 0.23 0.59 0.09 0.11 0.08 1.32 
1995 87 27 15.95 3.02 2.21 3.96 5.84 0.57 0.23 0.88 0.10 0.14 0.09 1.92 
1996 87 26 9.13 2.48 1.28 1.04 1.63 3.09 0.22 0.50 0.37 0.19 0.11 0.69 
1997 85 30 8.41 2.20 1.35 1.35 2.77 0.86 0.15 0.67 0.30 0.10 0.06 0.80 
1998 87 22 11.29 1.95 1.47 1.09 2.26 4.37 0.08 0.56 0.19 0.07 0.07 1.12 
1999 83 23 9.76 1.54 1.11 2.73 1.28 3.13 0.05 0.35 0.17 0.07 0.04 0.83 
2000 85 25 6.92 1.10 0.83 2.42 1.60 0.93 0.04 0.27 0.17 0.02 0.04 0.59 
2001 83 32 8.23 1.63 1.51 1.15 2.78 1.18 0.05 0.65 0.09 0.13 0.04 0.63 
2002 84 26 4.68 0.53 0.18 1.48 1.69 0.57 0.02 0.15 0.04 0.10 0.02 0.44 
2003 86 26 4.73 0.98 0.30 0.64 1.84 0.88 0.01 0.33 0.24 0.01 0.02 0.45 
2004 75 25 6.31 1.87 0.32 1.80 1.88 1.15 0.01 0.12 0.15 0.20 0.03 0.65 
2005 52 27 10.97 4.39 1.00 2.23 4.37 1.64 0.23 0.63 0.04 0.31 0.01 0.52 
2006 55 24 8.29 1.57 0.95 2.25 1.70 1.79 0.03 0.33 0.14 0.08 0.02 0.99 
2007 56 31 6.09 0.97 1.77 0.27 1.86 0.90 0.01 0.19 0.11 0.12 0.02 0.84 
2008 59 23 5.40 1.57 0.94 0.38 2.37 0.17 0.06 0.18 0.14 0.29 0.02 0.86 
2009 64 20 3.14 0.14 0.38 0.30 0.15 1.18 0.00 0.25 0.11 0.04 0.02 0.72 
2010 76 24 1.46 0.13 0.22 0.31 0.27 0.23 0.01 0.04 0.08 0.03 0.05 0.23 
2011 82 21 3.56 1.28 0.62 0.41 0.94 0.56 0.01 0.11 0.14 0.02 0.05 0.70 
2012 72 25 1.14 0.31 0.16 0.02 0.15 0.35 0.01 0.07 0.08 0.02 0.03 0.26 
2013 79 27 6.00 1.17 0.53 0.52 2.98 0.49 0.01 0.26 0.31 0.10 0.02 0.77 
2014 73 27 7.04 1.66 0.43 0.35 4.31 0.50 0.00 0.37 0.27 0.08 0.02 0.72 
2015 76 21 1.77 0.19 0.22 0.23 0.54 0.40 0.00 0.08 0.08 0.00 0.02 0.19 
2016 76 20 2.15 0.23 0.44 0.22 0.53 0.38 0.01 0.09 0.10 0.05 0.02 0.33 

Mean 69 22.7 8.79 1.87 1.15 2.39 2.10 1.66 0.17 0.34 0.11 0.13 0.06 0.68 
Median 76 23.0 6.92 1.57 1.00 1.09 1.86 0.88 0.12 0.33 0.09 0.11 0.05 0.69 
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Table 3. Lake Superior nearshore bottom trawl lakewide mean age-1 density (number/ha) estimates of 
Cisco, Bloater, Lake Whitefish, and Rainbow Smelt and for small lean and siscowet Lake Trout. Age-1 
fish were defined by species-specific lengths: Cisco <140 mm, Bloater <130 mm, Lake Whitefish <160 
mm, and Rainbow Smelt <100 mm. Lean and siscowet Lake Trout data are for fish <226 mm, ca. < age 
3.   

Year 
Year 
Class Sites 

Rainbow 
Smelt Cisco Bloater 

Lake 
Whitefish Kiyi 

Lean 
Lake 
Trout 

Siscowet 
Lake 
Trout 

1978 1977 43 95.76 0.02 0.82 2.62 0.00 0.11 0.00 
1979 1978 49 234.14 6.31 30.08 3.90 0.00 0.17 0.00 
1980 1979 48 96.79 0.10 1.57 1.97 0.00 0.12 0.00 
1981 1980 48 106.26 13.42 6.85 16.43 0.00 0.28 0.03 
1982 1981 32 63.81 0.19 0.75 4.16 0.00 0.22 0.00 
1983 1982 50 103.58 0.06 0.82 0.45 0.00 0.20 0.00 
1984 1983 53 224.39 21.72 4.74 8.04 0.00 0.59 0.00 
1985 1984 53 149.51 748.04 44.00 2.47 0.00 0.65 0.00 
1986 1985 53 150.41 68.94 30.55 3.45 0.00 0.43 0.06 
1987 1986 53 275.59 5.43 4.23 11.91 0.00 0.36 0.02 
1988 1987 53 155.27 0.53 6.86 6.11 0.01 0.26 0.00 
1989 1988 76 274.78 226.75 37.69 36.08 0.00 0.13 0.07 
1990 1989 81 272.04 425.63 57.26 8.78 0.01 0.22 0.02 
1991 1990 84 162.03 236.85 11.38 17.54 0.00 0.33 0.01 
1992 1991 85 176.94 9.05 10.71 11.84 0.06 0.40 0.02 
1993 1992 87 155.24 3.32 0.22 7.68 0.02 0.42 0.10 
1994 1993 87 198.62 0.79 0.06 4.95 0.02 0.57 0.01 
1995 1994 87 401.83 1.48 0.00 13.52 0.02 0.86 0.02 
1996 1995 87 168.25 0.97 0.05 6.33 0.01 1.13 0.10 
1997 1996 85 253.04 11.08 0.18 8.80 0.00 0.39 0.04 
1998 1997 87 145.01 1.20 0.12 7.74 0.02 0.60 0.02 
1999 1998 83 216.18 90.76 0.40 9.17 0.05 0.16 0.05 
2000 1999 85 58.40 3.86 0.48 0.77 0.26 0.18 0.01 
2001 2000 83 256.32 0.82 0.12 2.37 0.00 0.26 0.02 
2002 2001 84 56.79 0.54 0.12 13.68 0.00 0.12 0.03 
2003 2002 86 77.83 33.20 0.58 7.74 0.01 0.09 0.01 
2004 2003 75 70.28 175.37 27.22 6.36 0.11 0.12 0.01 
2005 2004 52 110.39 8.23 12.07 2.97 0.12 0.30 0.03 
2006 2005 55 249.56 18.64 13.61 5.51 0.13 0.24 0.10 
2007 2006 56 360.93 0.43 0.32 19.74 0.01 0.05 0.03 
2008 2007 59 280.69 0.19 0.28 0.63 0.00 0.10 0.04 
2009 2008 64 71.64 0.27 0.59 3.00 0.00 0.04 0.03 
2010 2009 76 45.22 14.01 2.46 6.64 0.01 0.02 0.02 
2011 2010 82 73.98 0.29 0.76 3.98 0.01 0.22 0.01 
2012 2011 72 11.05 0.03 0.06 1.90 0.00 0.20 0.03 
2013 2012 79 142.90 0.17 0.22 5.46 0.00 0.18 0.03 
2014 2013 73 68.46 0.01 0.06 2.27 0.00 0.00 0.03 
2015 2014 76 30.66 14.31 8.57 1.00 0.09 0.07 0.03 
2016 2015 76 82.71 4.99 9.76 1.57 0.12 0.19 0.04 

Mean 69 157.11 55.08 8.37 7.17 0.03 0.28 0.03 
Median 76 149.51 3.86 0.82 5.51 0.00 0.22 0.02 
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Abstract 

The U.S. Geological Survey Great Lakes Science Center has conducted integrated acoustic and 

mid-water trawl surveys of Lake Huron during 1997 and annually from 2004-2016. The 2016 

survey was conducted during September and early October and included transects in Lake 

Huron’s main basin, Georgian Bay, and North Channel. Mean lake-wide pelagic fish density was 

824 fish/ha and mean pelagic fish biomass was 9.0 kg/ha in 2016, which represents 58% and 

77% of the long-term mean respectively. Mean lake-wide biomass was 15% lower in 2016 as 

compared to 2015. The total estimated lake-wide standing stock biomass of pelagic fish species 

was ~42 kt (± 9.8 kt), consisting almost entirely of bloater (28.7 kt; 68%) and rainbow smelt (13 

kt; 31%). No alewives were captured during the 2016 survey. Age-0 rainbow smelt abundance 

decreased from 475 fish/ha in 2015 to 173 fish/ha in 2016. Biomass of age-1+ rainbow smelt 

increased from 2.2 kg/ha in 2015 to 2.6 kg/ha in 2016. Age-0 bloater abundance decreased from 

315 fish/ha in 2015 to 103 fish/ha in 2016. Biomass of age-1+ bloater decreased from 7.1 kg/ha 

in 2015 to 5.6 kg/ha in 2016. Emerald shiner density increased from 37 fish/ha in 2015 to 45 

fish/ha in 2016 and biomass remained unchanged between the two years. Bloater and rainbow 

smelt will continue to be the primary pelagic species available to offshore predators in coming 

years, with reduced numbers of rainbow smelt if recruitment to older ages remains poor.  

______________________________________________________________________________ 

†
Presented at: Great Lakes Fishery Commission 

Lake Huron Committee Meeting 

Ypsilanti, MI, March 21, 2017 

1
 The data associated with this report have not received final approval by the U.S. Geological Survey (USGS) and are currently 

under review. The Great Lakes Science Center is committed to complying with the Office of Management and Budget data 

release requirements and providing the public with high quality scientific data. We plan to make all USGS research vessel data 

collected between 1958 and 2016 publicly available from the GLSC website later in 2017. The anticipated citation will be 

http://doi.org/10.5066/F75M63X0.  Please direct any immediate questions to our Information Technology Specialist, Scott 

Nelson, at snelson@usgs.gov. 
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Introduction 

The U.S. Geological Survey Great Lakes Science Center (GLSC) has conducted bottom trawl 

surveys of the Lake Huron fish community since the 1970s. These surveys have tracked broad-

scale changes in the benthic fish community and provided valuable information on prey fish 

dynamics to fishery managers tasked with balancing predatory demand by native and introduced 

salmonines. Integrated acoustic and mid-water trawl surveys were implemented because it was 

recognized that a substantial proportion of the prey fish biomass was distributed in pelagic zones, 

which could not be measured using bottom trawl gear (Fabrizio et al. 1997, Stockwell et al. 

2007, Yule et al. 2008). Acoustic surveys were first conducted during the 1970s, but the first 

lake-wide acoustic survey that included all of Lake Huron’s distinct basins was conducted in 

1997. Annual surveys have been conducted since 2004; however, only the main basin was 

sampled during 2006. The purpose of this report is to present 2016 abundance and biomass 

estimates for major pelagic offshore prey fish species in Lake Huron and compare these 

estimates to previous years.  

Survey and analytical methods  

The pelagic prey fish survey in Lake Huron is based on a stratified-random design with acoustic 

transects in five geographic strata: eastern main basin (ME), western main basin (MW), southern 

main basin (SB), Georgian Bay (GB), and the North Channel (NC) (Figure 1). Within each 

stratum, the first transect is selected randomly each year based on latitude and longitude; 

subsequent transects are spaced relatively uniformly around the first. Effort (transects per 

stratum) is reallocated each year based on stratum area and variability of total biomass in each 

stratum from previous surveys (sampling design described in Adams et al. 2006). For analyses, 

each transect was divided into 10 m bottom contour intervals and 5-10 m depth layers (1997), 

1,000 m distance intervals and 10 m depth layers (2004-2011), or 3,000 m distance units and 10 

m depth layers (2012-2016).  These comprise the elementary sampling units (ESUs) within 

which fish density is summarized along transects. 

The 2016 pelagic fisheries survey was completed from 7 September to 3 October. Sampling was 

conducted by both the GLSC (R/V Sturgeon) and US Fish and Wildlife Service (USFWS; M/V 

Spencer F. Baird). Twenty-six acoustic transects were sampled, resulting in approximately 480 

km of acoustic data. Forty-five mid-water trawl tows were conducted in conjunction with 

acoustic data collection. 

Fish were collected using a 16.5-m headrope mid-water trawl with 76, 38, 25, and 6.35 mm 

stretch meshes (USGS) and a 19.8-m headrope mid-water trawl with 200, 150, 100, 75, 50, and 

38 mm stretch mesh with a cod-end liner having 3.175 mm stretch mesh (USFWS). Mid-water 

trawl locations and depths were chosen to target fish aggregations, but multiple tows per transect 

were conducted when fish were present so that trawl data within a stratum were available from 

each scattering layer formed by fish. At a minimum, a single mid-water trawl was conducted on 

each transect except in rare instances when very few fish targets were detected. Trawl fishing 

depth was monitored using Netmind
TM

 (2004-2015) and Marport M3 (2016) systems (USGS)

and a Simrad PI44 catch monitoring system (USFWS). In 2016, trawling depths ranged from 5 to 

71 m (mean = 29 m, mode = 20 m). Most mid-water trawl tows were of 20 minutes duration, 

with tow times extended up to 25 or 30 minutes when few fish were present. All fishes captured 

in the mid-water trawl tows were identified, counted, and weighed in aggregate (g) by species. 
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Total length in millimeters was measured on a random subsample (100-200 fish) per species per 

tow. Individual fishes were assigned to age categories (age-0 or age 1+) based on the following 

length cutoffs: alewife Alosa pseudoharengus =100 mm; rainbow smelt Osmerus mordax = 90 

mm; bloater Coregonus hoyi = 120 mm. These lengths approximate the lengths of the smallest 

age-1 fish of these species (GLSC unpublished data).  

 
Figure 1. Location of acoustic transects and mid-water trawls within sampling strata in Lake Huron during 

2016 (left), and location of acoustic transects during surveys in 2004-2015 (right). 

 

Density (fish/ha) of individual species was estimated for each transect as the product of acoustic 

fish density and the proportion of each species (by number) in the mid-water trawl catches at that 

location. Total density per species was subdivided into age-0 and age-1+ age-classes by 

multiplying total density by the numeric proportions of each age group. Biomass (kg/ha) of each 

species was estimated for each transect as the product of density and size-specific mean mass 

estimated from fish lengths in trawls, and length-weight relationships. The arithmetic mean and 

standard error are presented for total and species-specific density and biomass estimates for the 

survey area. 

 

Mean, standard error, and confidence limits for density and biomass for the entire survey area 

(all three basins pooled) were estimated using stratified cluster analysis methods in SAS (SAS 

Institute Inc. 2007). Cluster sampling techniques are appropriate for acoustic data, which 

represent a continuous stream of autocorrelated data (Williamson 1982, Connors and Schwager 

2002). Density and biomass values for each ESU in each stratum were weighted by dividing the 

stratum area by the number of ESUs in the stratum. 

Acoustic equipment specifications, software versions, single target detection parameters, noise 

levels, and detection limits can be found in appendices 1 and 2. Supplemental methods on 

acoustic analysis methods and acoustic equipment can be found in appendix 3. 
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Results and Discussion 

Density and biomass by species 

Alewife – During 2016, no alewives were captured. Alewife densities estimated in 1997, 2005-

2006, 2008, and 2013 were considerably higher than other years in the time series. However, we 

note that density differences, though substantial, did not mean that alewives were especially 

abundant in any survey year (Figure 2). During 1997, the year of highest abundance, alewives 

were only 3.1% of total fish density.  

Figure 2. Acoustic and mid-water trawl estimates of alewife numeric density (fish/ha; left panel) and biomass 

(kg/ha; right panel) in Lake Huron, 1997-2016. Error bars represent ±1 standard error. 

Acoustic estimates of alewife biomass have remained low for the last decade despite large 

fluctuations in density during 2004-2013 (Figure 2). Temporal biomass differences were largely 

due to differences in size and age structure between 1997 and other years. High biomass in 1997 

was due to age 1+ alewife and low biomass during 2004-2014 was the result of trawl catches 

dominated by age-0 fish (Figure 2). Since 2004, alewives have never comprised more than 2% of 

pelagic fish biomass. Although mid-water trawl catches of age-0 alewives occurred during some 

acoustic surveys, recruitment has been limited and alewives have shown no sign of returning to 

higher abundance. These findings differ from that observed in the 2016 bottom trawl survey 

(Riley et al. 2017), which found high numbers of young-of-year alewife in several trawl catches 

near the ports of Alpena and Hammond Bay. However, abundance and biomass of both young-

of-year and yearling-and-older alewife remain low relative to previous decades (Riley et al. 

2017). Overall trends between acoustic and bottom trawl surveys have typically been similar 

with respect to alewife abundance since populations crashed in 2004. 

Rainbow smelt – During 2016, age-0 rainbow smelt density decreased from 2015 estimates by 

nearly a factor of 3 to 24% of the long-term mean (Figure 3). Age-0 rainbow smelt populations 

are considerably less than the high observed in 1997, but there has been no clear trend in 

abundance since 2004. Age 1+ rainbow smelt biomass increased from 2.2 kg/ha in 2015 to 2.6 

kg/ha in 2016. This is roughly 60% of the long-term mean of 4.3 kg/ha (Figure 3) and 

Age-0 Age-1+ 
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substantially less than that observed in 1997. Rainbow smelt were most abundant in the North 

Channel and Georgian Bay respectively (Figure 4). 

 
Figure 3. Acoustic and mid-water trawl estimates of rainbow smelt age-0 numeric density (fish/ha; left panel) 

and age-1+ biomass (kg/ha; right panel) in Lake Huron, 1997-2016. Error bars represent ±1 standard error. 

 

 
 

Figure 4.  Geographic distribution of rainbow smelt (left) and bloater (right) biomass summarized within 

elementary sampling units (dots). Gray lines are 20 m depth intervals. 

 

Bloater – Estimates of age-0 bloater numeric density in 2016 were 33% of estimated densities for 

2015 (Figure 5). Estimated biomass of age-1+ bloater decreased from 7.1 kg/ha in 2015 to 5.6 

kg/ha in 2016 (Figure 5). However, the standard error around this estimate was large, indicating 

low precision. Similar to results from bottom trawl surveys, age-0 bloater density was variable, 

but increased during 2004-2015 (average density > 160 fish/ha). Biomass of age-1+ bloater 

Age-0 Age-1+ 
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showed an increasing trend from 2004-2008, followed by a decrease from 2009-2010. 

Abundance of age-1+ bloater remained relatively unchanged during 2011-2013. Although we 

have seen bloater biomass increase during the past three years, relative standard error for these 

estimates ranged from 36-48% indicating low equitability in distribution of biomass throughout 

Lake Huron. Much of the biomass is driven by bloater aggregations in the southern and 

northwestern main basin (Figure 4). 

 
 Figure 5. Acoustic and mid-water trawl estimates of bloater age-0 numeric density (fish/ha; left panel) and 

age-1+ biomass (kg/ha; right panel) in Lake Huron, 1997-2016. Error bars represent ±1 standard error. 

 

Emerald shiner – In 2016, emerald shiner biomass remained unchanged relative to 2015 and was 

24% of the long-term mean of 0.10 kg/ha (Figure 6).  In 2015, mean biomass of emerald shiner 

was estimated to be 0.22% of total pelagic fish biomass, compared to 0.27% in 2016. Emerald 

shiner biomass averaged 1.6% of total fish biomass during 2004-2014, but with the exception of 

2006, rarely exceeded 1% of total fish biomass in a given year. 

 

 

Age-0 Age-1+ 
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Figure 6. Acoustic and mid-water trawl estimates of emerald shiner numeric density (fish/ha; left panel) and 

biomass (kg/ha; right panel) in Lake Huron, 2004-2016. Error bars represent ±1 standard error. 

 

Other pelagic species - Other species captured during acoustic and mid-water trawl surveys 

included threespine stickleback Gasterosteus aculeatus, ninespine stickleback Pungitius 

pungitius, chinook salmon Oncorhynchus tshawytscha, lake whitefish Coregonus clupeaformis, 

lake trout Salvelinus namaycush, and cisco Coregonus artedi. These species typically compose a 

small proportion of the mid-water trawl catch. In the case of cisco, catches have occurred in most 

years during acoustic surveys, but their density remains low in open waters of the lake during 

September and October. During October in northern Lake Huron, cisco are primarily distributed 

in shallow, near shore areas (M.P. Ebener, Chippewa Ottawa Resource Authority, personal 

communication). Our acoustic and mid-water trawl surveys primarily operate in deeper waters 

(>15 m) during the fall, and therefore may not effectively sample cisco that are moving into 

shallower areas prior to spawning. Cisco are occasionally caught in mid-water trawls but catches 

are too sporadic to use trawl proportions to apportion acoustic densities. During 2016, sixteen 

cisco (> 300 mm TL) were captured.  Three of these were captured in the North Channel, seven 

in Georgian Bay and six in the main basin near the Straights of Mackinaw. These specimens 

were captured at a mean fishing depth of 19.5 m and mean water temperature of 17
o
C. This 

pattern in depth distribution is typical for cisco captured in the September acoustic surveys, with 

fish foraging in offshore areas at or near the thermocline.   

 

Among-basin comparisons of fish biomass 

In 2016, pelagic fish biomass decreased in the main basin and increased in both the North 

Channel and Georgian Bay. Biomass in the North Channel (13.3 kg/ha) was roughly 70% of the 

long-term mean and increases were driven by higher biomass of both age-1+ rainbow smelt and 

bloater (Figure 7). Mean main basin biomass (10.45 kg/ha) showed a 19% decrease from 2015 

primarily due to decreases in age-1+ bloater. Biomass in Georgian Bay (8.5 kg/ha) showed a 

two-fold increase to 76% of the long-term mean due to increases in age-0 and age-1+ rainbow 

smelt, and to a lesser extent, age-0 and age-1+ bloater (Figure 7). In addition to differences in 

fish biomass, the three basins have had different temporal trends in biomass and community 

composition. In both Georgian Bay and the main basin, fish biomass remains lower than in 1997, 
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but there is no clear evidence of a declining trend in the North Channel (Figure 7). Community 

composition differences are predominantly the result of variation in the proportion of biomass 

comprised by rainbow smelt and bloater, the two most dominant species.  
 

 
Figure 7. Biomass (kg/ha) of major pelagic fish species in Georgian Bay, main basin, and North Channel 

during 1997-2016. Horizontal lines denote 1997-2015 mean density. 

Most biomass in Georgian Bay is rainbow smelt (60% average), while biomass in the main basin 

has consisted of varying proportions of rainbow smelt and bloater. Since 2012, bloater has been 

the dominant contributor in the main basin, averaging 73% of pelagic fish biomass (Figure 8). In 

the North Channel rainbow smelt have comprised 73% of biomass on average. 

 

Lake-wide fish density and biomass 

Lake-wide mean pelagic fish density decreased from 1,313 fish/ha in 2015 to 824 fish/ha in 

2016, representing roughly 60% of the long-term mean (Figure 8). The 2016 pelagic fish density 

estimate represented 16% of that observed in 1997. The 2016 lake-wide mean pelagic fish 

biomass estimate was 9.0 kg/ha, a 15% decrease from 2015. Total standing stock biomass in 

2016 was estimated at 42 kt (SE 9.8 kt) (Figure 8). The decline in total standing stock biomass 

was driven primarily by lower biomass of age-1+ bloater in the main basin. In general, acoustic 

estimates of pelagic fish biomass in Lake Huron have shown no consistent trend between 2004 

and 2016. However, biomass has been considerably lower than in 1997 when rainbow smelt and 

bloater were more abundant in Georgian Bay and the main basin, and alewife was more abundant 

throughout the lake.  
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Figure 8. Acoustic and mid-water trawl estimates of lake-wide numeric density (fish/ha; left panel) and 

standing stock biomass (kilotonnes; right panel) in Lake Huron, 1997-2016. Error bars represent ±1 standard 

error. 

Estimates derived from the lake-wide acoustic survey, as with any other type of fishery survey, 

include assumptions about the sampling and data analysis techniques. For example, we assumed 

that the areas sampled were representative of the respective basins. This survey sampled areas of 

Lake Huron from 10 to 250 m in depth. These depths encompass 85% of the range of depths in 

Lake Huron, although sampling is limited in shallower (<20 m) areas of the lake. For example, 

nearshore zones and large shallow embayments, especially Thunder Bay, Saginaw Bay, and 

Parry Sound, are not sampled. These areas could be responsible for high rates of pelagic fish 

production (Fielder and Thomas 2014, Höök et al. 2001, Klumb et al. 2003), but could not be 

sampled safely due to the draft of our research vessel (3 m). Given the small surface areas of 

these shallow-water embayments relative to the total surface area, densities would need to be 

considerable to influence the lake-wide mean. We conducted sufficient mid-water trawls to 

achieve an acceptable degree of confidence in fish community composition, according to 

guidelines in Warner et al. (2012). An additional assumption was that fish size was a reasonable 

proxy for age-0 or age-1+ groupings. We used size to assign age and assumed no overlap in age 

among size classes. This assumption was likely violated, especially for rainbow smelt. While this 

might have slight effects on our estimates of age-0 versus age-1+ density and biomass, it would 

have no impact on our estimates of total density or biomass for a species. 

Conclusions 

Relatively high adult bloater biomass during 2016 indicates that this species will continue to be 

the most available pelagic prey species in the offshore zone of Lake Huron. Although lake-wide 

preyfish biomass decreased in 2016 due to reduced biomass of bloater, preyfish stocks in 

Georgian Bay increased relative to 2015, and have maintained relatively high productivity in the 

North Channel through time. Biomass of rainbow smelt in the main basin will likely remain low 

during 2017 given recent trends in low recruitment for this species (O’Brien et al. 2014) and 
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relatively low adult biomass in 2016. During 2017, pelagic prey available to piscivores will 

likely be similar to that seen in recent years. 

Lake-wide pelagic biomass in Lake Huron during 2016 (9.7 kg/h) was higher than that estimated 

for Lake Michigan during 2016 (5.5 kg/ha, Warner et al. 2017) and Lake Superior during 2011 

(6.8 kg/ha, Yule et al. 2013). In addition to differences in lake-wide biomass in recent years, 

pelagic fish community composition differs between the three lakes. In Lake Michigan, alewife 

is still prevalent and comprises about 72% of the pelagic biomass, while in lakes Huron and 

Superior, the biomass of this species is negligible. Additionally, native coregonines and other 

species are at historic low levels in Lake Michigan. Native species constitute much higher 

proportions of total biomass in lakes Huron and Superior. In the case of Lake Superior, kiyi 

(Coregonus kiyi) are numerically dominant at depths > 100 m and cisco is dominant by biomass 

(Yule et al. 2013). In Lake Huron, rainbow smelt are numerically more abundant, while rainbow 

smelt and bloater have been alternating roles as the dominant contributor to total biomass, with 

bloater contributing more in recent years. Additionally, there have been relatively consistent (but 

low) catches of emerald shiner and cisco in Lake Huron mid-water trawling. In the case of 

emerald shiner, it is likely that their reappearance was the result of a release from predation on 

fry following the collapse of alewife (Madenjian et al. 2008; Schaeffer et al. 2008).  

To provide accurate estimates of available prey fish resources in Lake Huron, the continuation of 

acoustic surveys will be instrumental in assessing the pelagic component of the prey fish 

community, while complementing bottom trawl surveys that better estimate benthic prey 

resources. The information gathered from acoustic surveys that sample areas where bottom 

trawling is not feasible will increase our understanding of variation in prey fish biomass across 

large temporal and spatial scales (i.e., all of Lake Huron’s basins). As no single gear is best for 

assessing all species, life stages, or habitats, estimates of fish biomass from multiple gear types 

will lead to a better understanding of ecosystem dynamics. 
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Appendix 1. Single target detection parameters used in acoustic data analyses in 2016. 

Parameter Value 

TS threshold (dB) -77
1

Pulse length determination level (dB) 6

Minimum normalized pulse length 0.7

Maximum normalized pulse length 1.5

Maximum beam compensation (dB) 6

Maximum standard deviation of minor-axis angles 0.6

Maximum standard deviation of major-axis angles 0.6
1 
Only targets ≥-60 dB were included in analysis 

Appendix 2. Noise levels, detection limits, and acoustic equipment specifications in Lake 

Huron, 2016.  

Vessel R/V Sturgeon M/V Spencer Baird 

Collection software Visual Acquisition 6.0 ER60 2.2 

Transducer beam angle (3dB) 8.28º split beam 6.53º split beam 

Frequency (kHz) 120 120 

Pulse length (ms) 0.4 0.256 

Sv noise at 1 m (dB) -125 -125

2 way equivalent beam angle -19.78 -21

Detection limit (m) for -60 dB target
2
 >100 >100

2
 Assuming 3 dB signal-to-noise ratio. 

Appendix 3. Supplement to methods 

Acoustic data collected in 1997 were analyzed using custom software (Argyle et al. 1998). Data 

collected in 2004 and later years were analyzed using Echoview
TM 

software, which provided fish

density estimates for each sampling unit. Fish density was calculated as:  



ABC
hafishDensity  410)/(

where ABC was the area backscattering coefficient (m
2
 / m

2
) of each 10 m high by 1000-3,000 m

long cell, and σ was the mean backscattering cross section (m
2
) of all targets between -60 and -

30 dB in each cell. The lower threshold should have included any age-0 alewives present 

(Warner et al. 2002), but may have underestimated age-0 rainbow smelt density (Rudstam et al. 

2003). The upper threshold excluded fish larger than our species of interest. 

In 1997, a BioSonics model 102 dual-beam echosounder was used to collect acoustic data during 

pelagic fish surveys. During 2004-2005 and 2007-2008 acoustic data were collected during 

September through early October with a BioSonics split-beam 120 kHz echosounder deployed 

from the Research Vessel (R/V) Sturgeon. During 2006, acoustic data were collected during 

August with a 70 kHz echosounder and a transducer deployed via towfish from the R/V 

Grayling. During 2009, the survey was performed with a 38 kHz echosounder because the 120 
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Abstract  
The U.S. Geological Survey Great Lakes Science Center has conducted lake-wide surveys of the fish 
community in Lake Michigan each fall since 1973 using standard 12-m bottom trawls towed along 
contour at depths of 9 to 110 m at each of seven index transects.  The resulting data on relative 
abundance, size and age structure, and condition of individual fishes are used to estimate various 
population parameters that are in turn used by state and tribal agencies in managing Lake Michigan fish 
stocks.  All seven established index transects of the survey were completed in 2016.  The survey provides 
relative abundance and biomass estimates between the 5-m and 114-m depth contours of the lake (herein, 
lake-wide) for prey fish populations, as well as burbot, yellow perch.  Lake-wide biomass of alewives in 
2016 was estimated at 0.35 kilotonnes (kt, 1 kt = 1000 metric tonnes), which was a record low, and 30% 
lower than in 2015.  Age distribution of alewives remained truncated with no alewife exceeding age 4.  
Bloater biomass increased twofold from 2.8 kt in 2015 to 5.9 kt in 2016.  Round goby biomass increased 
fourfold from 0.3 kt in 2015 to 1.1 kt in 2016.  Rainbow smelt biomass also increased fourfold up to 0.3 
kt in 2016, but it was still the seventh straight year under 1 kt.  Both sculpin species also were estimated 
higher in 2016 relative to 2015: slimy sculpins were estimated at 0.8 kt (highest since 2011) and 
deepwater sculpins were estimated at 3.0 kt (highest since 2009).  Ninespine stickleback remained at near 
record low levels of biomass (0.003 kt).  Burbot lake-wide biomass (0.2 kt in 2016) has remained below 3 
kt since 2001.  Age-0 yellow perch abundance was estimated to be 2.4 fish per ha, which is indicative of a 
relatively weak year-class.  Overall, the total lake-wide prey fish biomass estimate (sum of alewife, 
bloater, rainbow smelt, deepwater sculpin, slimy sculpin, round goby, and ninespine stickleback) in 2016 
was 11.4 kt, nearly a threefold increase over 2015 but still the third lowest estimate in the 44-year time 
series.  In 2016, bloater and deepwater sculpin, two native fishes, constituted 78% of this total.    
 
                                                           
1 Presented at Great Lakes Fishery Commission, Lake Michigan Committee Meeting,  Ypsilanti, MI on March 20, 
2017 
 
2The data associated with this report have not received final approval by the U.S. Geological Survey (USGS) and are 
currently under review. The Great Lakes Science Center is committed to complying with the Office of Management 
and Budget data release requirements and providing the public with high quality scientific data. We plan 
to make all USGS research vessel data collected between 1958 and 2016 publicly available from the GLSC 
website later in 2017. The anticipated citation will be http://doi.org/10.5066/F75M63X0.  Please direct any 
immediate questions to our Information Technology Specialist, Scott Nelson, at snelson@usgs.gov. 
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The U.S. Geological Survey Great Lakes Science Center (GLSC) has conducted daytime bottom trawl 
surveys in Lake Michigan during the fall annually since 1973.  Estimates from the 1998 survey are not 
reported, however, given the trawls were towed at non-standard speeds.  From these surveys, the relative 
abundance of the prey fish populations are measured, and estimates of lake-wide biomass available to the 
bottom trawls (for the region of the main basin between the 5-m and 114-m depth contours) can be 
generated (Hatch et al. 1981; Brown and Stedman 1995).  Such estimates are critical to fisheries managers 
making decisions on stocking and harvest rates of salmonines and allowable harvests of fish by 
commercial fishing operations.   
 
 
The basic unit of sampling in our surveys is a 10-minute tow using a bottom trawl (12-m headrope, 25 to 
45-mm bar mesh in net body, 6.4-mm bar mesh in cod end) dragged on contour at 9-m (5 fathom) depth 
increments.  At most survey locations, towing depths range from 9 or 18 m to 110 m.  In 2013, we began 
adding tows at deeper depths (i.e., 128 m) to assess the extent to which populations of deepwater sculpins 
and bloater have migrated outside of our traditional survey range.  Since then, we have sampled deeper 
depths offshore of all ports except Waukegan, for a total of 17 “deep” tows.  To maintain time series 
consistency, these tows are not included in our time series results but are specifically noted for some 
species.   
 
Ages were estimated for alewives (Alosa pseudoharengus, using otoliths) and bloaters (Coregonus hoyi, 
using scales) from our bottom trawl catches (Madenjian et al. 2003; Bunnell et al. 2006a).  Although our 
surveys have included as many as nine index transects in any given year, we have consistently conducted 
the surveys at seven transects, only data from those transects are reported herein.  These transects are 
situated off Manistique, Frankfort, Ludington, and Saugatuck, Michigan; Waukegan, Illinois; and Port 
Washington and Sturgeon Bay, Wisconsin (Figure 1).  All seven transects were completed in 2016. 

 
Indices of lake-wide biomass of fishes vulnerable to the bottom 
trawl require accurate measures of (1) the surface areas that 
represent the depths sampled and (2) bottom area swept by the 
trawl.  A complete Geographical Information System (GIS) 
based on depth soundings at 2-km intervals in Lake Michigan 
was developed as part of the acoustics study performed by 
Argyle et al. (1998).  This GIS database was used to estimate 
the surface area for each individual depth zone surveyed by the 
bottom trawls.  In June 2009, we used trawl mensuration gear to 
monitor net configuration during deployment.  It provided 
specific correction factors for width of the net and actual time 
on bottom when sampling at 2.1 mph (Madenjian et al. 2010a) 
that were applied to all years through 2015.   
 
We revisited these relationships in June 2016 given that we 
switched to the R/V Arcticus, which has a wider beam than the 
previously used R/V Grayling.  In addition to trawl mensuration 
gear, we also used a go-pro camera and adjusted the number of 
chain links that connect the door to the bridle to improve the 
angle upon which the doors fish the net.  We found that the 
relationship between bottom depth, D, and width of the net, W, 

needed to be updated for the R/V Arcticus: W = 6.43 + 6.55(1 – e-0.074*D). On average, the trawl fished 
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about 2.9 m wider on the R/V Arcticus compared to what we measured on the R/V Grayling in 2009.  In 
2016, we also began directly estimating time on bottom for each tow with an RBR sensor that was 
attached to the head rope, and which estimates sensor depth every second.  After every tow, we plotted 
time versus depth to determine when the net settled on the bottom and when it came off the bottom.  We 
only applied these changes (new width prediction, empirical time on bottom) in 2016, even though the 
R/V Arcticus was first used in 2015- largely because the chain link adjustments were not made in 2015.   
       
We estimate both numeric (fish per hectare [ha]) and biomass (kg per ha) density, although we display 
graphical trends mostly in biomass for brevity.  A weighted mean density over the entire range of depths  
sampled (within the 5-m to 114-m depth contours) was estimated by first calculating mean density for 
each depth zone, and then weighting mean density for each depth zone by the proportion of lake surface 
area assigned to that depth zone.  Standard error (SE) of mean density was estimated by weighting the 
variances of fish density in each of the depth zones by the appropriate weight (squared proportion of 
surface area in the depth zone), averaging the weighted variances over all depth zones, and taking the 
square root of the result.   
 
NUMERIC AND BIOMASS DENSITY BY SPECIES 
 
By convention, we classify "adult" prey fish as age 1 or older, based on total length (TL): alewives ≥ 100 
mm, rainbow smelt (Osmerus mordax) ≥ 90 mm, bloaters ≥ 120 mm, and yellow perch (Perca flavescens) 
≥ 100 mm.  We assume all fish smaller than the above length cut-offs are age-0; length cut-offs are also 
aided by aging of alewife (by otoliths) and bloater (by scales).  Catches of age-0 alewife are not reliable 
indicators of future year-class strength (Madenjian et al. 2005a), because their position in the water 
column makes them less vulnerable to bottom trawls.  Catches of age-0 bloater, though biased low, can be 
used as an index of relative abundance given the positive correlation between density of age-0 bloater and 
density of age-3 bloater (the age at which catch curves reveal full recruitment to our gear, Bunnell et al. 
2006a, 2010).  Catch of age-0 (< 100 mm TL) yellow perch is likely a good indicator of year-class 
strength, given that large catches in the bottom trawl during the 1980s corresponded to the strong yellow 
perch fishery.  At the end of this report, we also present densities of age-0 yellow perch and other bottom-
dwelling species such as burbot (Lota lota) that are not necessarily “prey fish” but are caught in sufficient 
numbers to index.  Unfortunately lake whitefish (Coregonus clupeaformis) are only rarely sampled in our 
trawl and the resultant trends are not meaningful.  Since 1999, dreissenid mussels sampled in the trawl 
have also been sorted and weighed (but not counted), and their biomass is reported in the Appendix.  
Beginning this year, we do not report the time series for dreissenid mussel biomass because the annual 
estimate is extremely sensitive to our ability to retrieve hundreds of pounds of mussels in the trawl on to 
the boat, often times with assistance of the crane on the back deck.  Because we retrieved all but one tow 
this year (the cod end came undone owing to a large mussel load at Ludington 73 m in 2016), the mussel 
biomass estimate was extremely large.  In contrast, during 2011-2014 on the R/V Grayling, most large 
mussel hauls were not retrieved because its crane was underpowered.  
 
Alewife – Since its establishment in the 1950s, the alewife has become a key member of the fish 
community.  As a larval predator, adult alewife can depress recruitment of native fishes, including burbot, 
deepwater sculpin (Myoxocephalus thompsonii), emerald shiner (Notropis atherinoides), lake trout 
(Salvelinus namaycush), and yellow perch (Smith 1970; Wells and McLain 1973; Madenjian et al. 2005b, 
2008; Bunnell et al. 2006b).  Additionally, alewife has remained the most important constituent of 
salmonine diet in Lake Michigan for the last 45 years (Jude et al. 1987; Stewart and Ibarra 1991; Warner 
et al. 2008; Jacobs et al. 2013).  Most of the alewives consumed by salmonines in Lake Michigan are 
eaten by Chinook salmon (Oncorhynchus tshawytscha, Madenjian et al. 2002; Tsehaye et al. 2014).  A 
commercial harvest was established in Wisconsin waters of Lake Michigan in the 1960s to make use of 
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the then extremely abundant alewife that had become a nuisance and health hazard along the lakeshore.  
In 1986, a quota was implemented, and as a result of these restrictions, the estimated annual alewife 
harvest declined from about 7,600 metric tons in 1985 to an incidental harvest after 1990.  Lake Michigan 
currently has no commercial fishery for alewives. 
 
According to the bottom trawl survey results, adult alewife biomass density equaled 0.03 kg per ha in 
2016, a record low (Figure 2a).  Likewise, adult alewife numeric density in 2016 equaled a record-low 
estimate of 2.5 fish per ha (Figure 2b).  In 2016, 84% of tows and four ports failed to sample any alewife 
(Figure 3).  Since 2013, alewives have been sampled in 10 of 17 deep tows.  For 7 of them, alewife 
biomass density at 128 m was higher than at 110 m, suggesting that some proportion of the alewife 
population is in waters deeper than 110 m.  

 
Figure 2. Density of adult alewives as biomass (a) and number (b) per ha (+/- standard error) in Lake 
Michigan, 1973-2016. 
 

The long-term temporal trends in adult alewife biomass, as well 
as in alewife recruitment to age 3, in Lake Michigan are 
attributable to consumption of alewives by salmonines 
(Madenjian et al. 2002, 2005a; Tsehaye et al. 2014).  Several 
factors have likely maintained this high predation pressure in 
the 2000s including: a relatively high percentage (>50%) of 
wild age-1 Chinook salmon in Lake Michigan (Williams 2012), 
increased migration of Chinook salmon from Lake Huron in 
search of alewives (Adlerstein et al. 2007; R. Clark, Michigan 
State University Quantitative Fisheries Center, personal 
communication), increased importance of alewives in the diet of 
Chinook salmon in Lake Michigan (Jacobs et al. 2013), a 
decrease in the energy density of adult alewives (Madenjian et 
al. 2006), and increases in lake trout abundance due to increased 
rates of stocking and natural reproduction (FWS/GLFC 2016; 
Lake Michigan LTWG 2016).   
 
In 2016, the bottom trawl survey only captured 36 “adult” (i.e., 
>100 TL) alewives for which we typically construct an age-
length distribution.  The age composition of these fish was 
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dominated by age-1 (48%, 2015 year-class) and age-4 (31%, 2012 year-class) fish.  The age-0 (2016 year-
class), age-3 (2013 year-class), and age-2 (2014 year-class) fish represented 10%, 7%, and 4%, 
respectively (Figure 4).  No alewives older than age 4 were caught in the survey, thus, the recent trend of 
age truncation in the alewife population continued through 2016.  Prior to 2008, age-8 alewives were 
routinely captured. 

    
Figure 4. Age-length distribution of alewives ≥ 100 mm total length 
caught in bottom trawls in Lake Michigan, 2016.   

Both the acoustic and bottom trawl survey time series for total 
alewife biomass are in general agreement, indicating that  
biomass during 2004-2016 was relatively low compared with 
biomass during 1994-1996 (Warner et al. 2017).  Across the 21 
years, however, the acoustic estimate has been higher than the 
bottom trawl survey estimate 81% of the time.  The discrepancy 
between the two estimates has increased between 2014 and 
2016, with the acoustic estimate being 10-40 times higher.  The 
acoustic survey likely provides a less biased estimate of younger 

(age 3 and younger) alewives, owing to their pelagic orientation.  Thus, this recent higher discrepancy 
between the two surveys may have been partly due to the alewife population in the lake becoming 
younger in recent years, but other factors were also likely involved.  In addition, the acoustic survey 
reported a 14% increase in total alewife biomass in 2016, relative to 2015. 
  
Bloater - Bloaters are eaten by salmonines in Lake Michigan, but are far less prevalent in salmonine diets 
than alewives (Warner et al. 2008; Jacobs et al. 2010, 2013).  For large (≥ 600 mm) lake trout, over 30% 
of the diets offshore of Saugatuck and on Sheboygan Reef were composed of adult bloaters during 1994-
1995, although adult bloaters were a minor component of lake trout diet at Sturgeon Bay (Madenjian et al. 
1998).  For Chinook salmon, the importance of bloater (by wet weight) in the diets has declined between 
1994-1995 and 2009-2010.  For small (< 500 mm) Chinook salmon the proportion declined from 9% to 
6% and for large Chinook salmon the proportion declined from 14% to <1% (Jacobs et al. 2013).  The 
bloater population in Lake Michigan also supports a valuable commercial fishery, although its yield has 
declined sharply since the late 1990s.   
 
Adult bloater biomass density in our survey has been < 10 kg per ha since 1999 (Figure 5a).  In 2016, 
bloater biomass equaled 0.74 kg per ha, very similar to the 2015 estimate.  Numeric density of age-0  

42



 

Figure 5.  Panel (a) depicts biomass density (+/- standard error) of adult bloater in Lake Michigan, 1973-
2016.  Panel (b) depicts numeric density (+/- standard error) of age-0 bloater in Lake Michigan, 1973-2016. 

 
bloaters (< 120 mm TL), however, were 160 per ha, which was the highest estimate since 1990 (Figure 
5b).  Bloaters were sampled in all seven ports in 2016 (Figure 6), with the highest mean biomass at Port 
Washington and Ludington.  Since 2013, bloaters have been sampled in 7 of 17 deep tows.  For only 3 of 
them, bloater biomass density at 128 m was higher than at 110 m, suggesting that a relatively small 
proportion of the bloater population is in waters deeper than 110 m. 
 
The exact mechanisms underlying the relatively poor bloater recruitment since 1992 (Figure 5b), and the 
low biomass of adult bloater since 2007 (Figure 5a), remain unknown.  Madenjian et al. (2002) proposed 
that the Lake Michigan bloater population may be cycling in abundance, with a period of about 30 years, 
although the exact mechanism by which recruitment is regulated remains unknown.  Of the mechanisms 
that have been recently evaluated, reductions in fecundity associated with poorer condition (Bunnell et al. 
2009) and egg predation by slimy and deepwater sculpins (Bunnell et al. 2014a) are likely contributing to 
the reduced bloater recruitment, but none is the primary regulating factor.   

 
An important consideration when interpreting the bottom 
trawl survey results is that bloater catchability may have 
decreased in recent years, in response to the proliferation of 
quagga mussels and the associated increased water clarity 
and decreased Diporeia spp. densities, which could be 
responsible for a shift to the more pelagic calanoid copepods 
in their diets (Bunnell et al. 2015).  Hence, one hypothesis is 
that bloaters are less vulnerable to our daytime bottom 
trawls either owing to behavioral changes (more pelagic 
during the day) or increased ability to avoid the net while on 
the bottom (due to clearer water).  If increased ability to 
avoid the net underlies changing catchability for bloater, it 
also raises the possibility that this factor is affecting other 
species, such as alewife.           
 
Both the acoustic and bottom trawl survey report that 
biomass of bloater was at least an order of magnitude higher 
during 1992-1996 than during 2001-2016.  A comparison of 
the two surveys during 1992-2006 revealed that the biomass 
estimate from the bottom trawl survey was always higher 
(79%, on average) than the acoustic survey estimate.  Since 
2007, which survey yielded the highest estimate has been 
more variable.  In 2016, total biomass density estimated for 
bloater was twice as high in the bottom trawl survey (1.66 
kg per ha) than in the acoustic survey (0.79 kg per ha).  Age-
0 bloater trends also have revealed differences between 
surveys through time.  During 1992-1996, both surveys 

reported age-0 bloater per ha to range between 0.3 and 6.2 fish per ha.  Since 2001, however, the acoustic 
survey has reported nine years where age-0 bloater per ha exceeded 100 per ha; the bottom trawl survey 
has only reported one such year- 2016.  One potential explanation for these inconsistent differences in 
survey results over time is that catchability of age-0 bloater with the bottom trawl decreased sometime 
during the 2000s.          
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Rainbow smelt − Adult rainbow smelt have been an important part of the diet for intermediate-sized (400 
to 600 mm) lake trout in the nearshore waters of Lake Michigan (Stewart et al. 1983; Madenjian et al. 
1998; Jacobs et al. 2010).  For Chinook salmon, rainbow smelt comprised as much as 18% in the diets of 
small individuals in 1994-1996, but that dropped precipitously to 2% in 2009-2010 and rainbow smelt has 
been consistently rare in the diets of larger Chinook salmon since 1994 (Jacobs et al. 2013).  The rainbow 
smelt population has traditionally supported commercial fisheries in Wisconsin and Michigan waters 
(e.g., Belonger et al. 1998), but its yields have also declined through time.  Between 1971 and 1999, more 
than 1.3 million pounds were annually harvested on average.  Between 2000 and 2011, the annual average 
dropped to about 375,000 pounds.  Since 2013, less than 2,000 pounds have been harvested per year. 

Figure 7. Biomass density (+/- standard error) of adult (a) and age-0 (b) rainbow smelt in Lake Michigan, 
1973-2016.   

Similar to the commercial yields, adult rainbow smelt biomass 
density in the bottom trawl has remained at low levels since 2001, 
aside from a relatively high estimate in 2005 (Figure 7a).  
Biomass density in 2016 was 0.04 kg per ha.  Age-0 rainbow 
smelt numeric density has been highly variable since 1999 
(Figure 7b), but equaled only 66 fish per ha in 2016, marking six 
consecutive year-classes with <100 fish per ha.  Rainbow smelt 
were sampled in five of seven ports in 2016 (Figure 8), with the 
highest mean biomass at the northern ports of Manistique and 
Sturgeon Bay.  Causes for the general decline in rainbow smelt 
biomass and production remain unclear.  Consumption of 
rainbow smelt by salmonines was higher in the mid-1980s than 
during the 1990s (Madenjian et al. 2002), yet adult and age-0 (< 
90 mm TL) rainbow smelt abundance remained high during the 
1980s (Figure 7b).  Results from a recent population modeling 
exercise suggested that predation by salmonines was not the 
primary driver of long-term temporal trends in Lake Michigan 
rainbow smelt abundance (Tsehaye et al. 2014).   Furthermore, a 
recent analysis of our time series suggested that the productivity 
of the population has actually increased since 2000 (relative to 
1982-1999), yet those recruits do not appear to be surviving to the 
adult population (Feiner et al. 2015). 
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The bottom trawl and acoustic surveys detected similar temporal trends, with biomass densities an order 
of magnitude higher, on average, during 1992-1996 than during 2001-2014.  A comparison of the two 
survey estimates revealed that acoustic survey always exceeds that of the bottom trawl survey, on average 
by a factor of 6.  This difference is not surprising given that rainbow smelt tend to be more pelagic than 
other prey species during the day.  In 2016, the total biomass estimate for all rainbow smelt was 0.76 kg 
per ha for the acoustic survey (Warner et al. 2017), which was more than 9 times greater than the bottom 
trawl survey estimate (0.08 kg/ha).   
 
Sculpins – From a biomass perspective, the cottid populations in Lake Michigan have been dominated by 
deepwater sculpins, and to a lesser degree, slimy sculpins (Cottus cognatus).  Spoonhead sculpins (Cottus 
ricei), once fairly common, suffered declines to become rare to absent by the mid-1970s (Eck and Wells 
1987).  Spoonhead sculpins were encountered in small numbers in our survey between 1990 and 1999 
(e.g., Potter and Fleischer 1992), but have not been sampled since 1999.  Slimy sculpin is a favored prey 
of juvenile lake trout in nearshore regions of the lake (Stewart et al. 1983; Madenjian et al. 1998), but is 
only a minor part of adult lake trout diets.  When abundant, deepwater sculpin can be an important diet 
constituent for burbot in Lake Michigan, especially in deeper waters (Van Oosten and Deason 1938; 
Brown and Stedman 1995; Fratt et al. 1997).   

 
Figure 9. Biomass density (+/- standard error) for deepwater (a) and slimy sculpin (b) in Lake Michigan, 
1973-2016. 

Deepwater sculpin biomass density in 2016 was 0.85 kg per ha, a nearly 8-fold increase over 2015 and the 
highest estimate since 2009 (Figure 9a).  Previous analysis of the time series indicated deepwater sculpin 
density is negatively influenced by alewife (predation on sculpin larvae) and burbot (predation on juvenile 
and adult sculpin, Madenjian et al. 2005b).  Based on bottom trawl survey results, neither alewife nor 
burbot significantly increased in abundance during 2007-2015 to account for this decline in deepwater 
sculpins.  Following no clear trend between 1990 and 2005, the biomass of deepwater sculpin sampled in 
the bottom trawl has declined since 2005.  Madenjian and Bunnell (2008) demonstrated that deepwater 
sculpins have been captured at increasingly greater depths since the 1980s.  Therefore, one potential 
explanation for the recent declines in deepwater sculpin densities is that an increasing proportion of the 
population is now occupying depths deeper than those sampled by our survey (i.e., 110 m), perhaps in 
response to the decline of Diporeia and proliferation of dreissenid mussels.  Furthermore, because the 
deepwater sculpin has historically occupied deeper depths than any of the other prey fishes of Lake 
Michigan, a shift to waters deeper than 110 m would seem to be a reasonable explanation for the recent 
declines in deepwater sculpin densities.  Our sampling at deeper depths has been supportive of this 
hypothesis.  Since 2013, deepwater sculpins have been sampled in all 17 deep tows.  For 13 of them, 
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deepwater sculpin biomass density at 128 m was higher than at 110 m, suggesting that a relatively large 
proportion of the population is in waters deeper than 110 m. 
 
Slimy sculpin biomass density was 0.23 kg per ha in 2016, a significant increase over 2015.  In fact, slimy 
sculpin had been declining between 2009 and 2015, although this followed several “sawtooth” patterns in 
slimy sculpin biomass since around 1995 (Figure 9b).  Slimy sculpin abundance in Lake Michigan is 
regulated, at least in part, by predation from juvenile lake trout (Madenjian et al. 2005b).  We attribute the 
slimy sculpin recovery that occurred during the 1990s to, in part, the 1986 decision to emphasize stocking 
lake trout on offshore reefs (outside of our sampling area, Madenjian et al. 2002).  Likewise, the slimy 
sculpin decline that began in 2009 coincided with a substantial increase in the rate of stocking juvenile 
lake trout into Lake Michigan and an increase in natural reproduction by lake trout (FWS/GLFC 2016; 
Lake Michigan LTWG 2016).  Since 2013, slimy sculpins have been sampled in 11 out of 17 deep tows.  
For only 4 of them, however, slimy sculpin biomass density at 128 m was higher than at 110 m, 
suggesting that a relatively small proportion of the population is in waters deeper than 110 m.      

 
Figure 10. Biomass density (+/- standard error) of round goby (a) and ninespine stickleback (b) in Lake 
Michigan, 1973-2016. 

Round goby − The round goby (Neogobius melanostomus) is an invader from the Black and Caspian 
Seas.  Round gobies have been observed in bays and harbors of 
Lake Michigan since 1993, and were captured in the southern 
main basin of the lake as early as 1997 (Clapp et al. 2001).  Round 
gobies were not captured in the GLSC bottom trawl survey until 
2003; our survey likely markedly underestimates round goby 
abundance given their preferred habitat includes rocky and inshore 
(i.e., < 9 m bottom depth) areas that we do not sample.  By 2002, 
round gobies had become an integral component of yellow perch 
diets at nearshore sites (i.e., < 15 m depth) in southern Lake 
Michigan.  Recent studies have revealed round gobies are an 
important constituent of the diets of Lake Michigan burbot 
(Hensler et al. 2008; Jacobs et al. 2010), yellow perch (Truemper 
et al. 2006), smallmouth bass (Micropterus dolomieu, T. 
Galarowicz, Central Michigan University, personal 
communication), lake trout (McKenna 2014), and even lake 
whitefish (S. Hansen, Wisconsin DNR, personal communication).    
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Round goby biomass density equaled 0.32 kg per ha in 2016 (Figure 10a).  Since 2011, round goby 
biomass has ranged between 0.30 and 1.0 kg per ha in every year except for 2013 (due to a few 
extraordinarily large catches inflating the mean and causing high uncertainty) and 2015 (due to 
consistently low catches).  Round goby were sampled in all seven ports in 2016 (Figure 11), with the 
highest mean biomass at Sturgeon Bay.  We hypothesize that round goby abundance in Lake Michigan is 
being controlled by predation.  This hypothesis was supported by recent estimates of annual mortality 
rates of between 79 and 84% (Huo et al. 2014), which are comparable to the mortality rates currently 
experienced by Lake Michigan adult alewives (Tsehaye et al. 2014).  
 
Ninespine stickleback – Two stickleback species occur in Lake Michigan.  Ninespine stickleback 
(Pungitius pungitius) is native, whereas threespine stickleback (Gasterosteus aculeatus) is non-native and 
was first collected in the GLSC bottom trawl survey during 1984 (Stedman and Bowen 1985), but has 
been extremely rare in recent sampling years.  Biomass density of ninespine stickleback in 2016 was only 
0.8 g per ha, the second lowest estimate ever recorded (Figure 10b).  Biomass of ninespine stickleback 
remained fairly low from 1973-1995 and then increased dramatically through 2007, perhaps attributable 
to dreissenid mussels enhancing ninespine stickleback spawning and nursery habitat through proliferation 
of Cladophora (Madenjian et al. 2010b).  Since 2008, however, biomass has been maintained at or near 
record-low levels.  One plausible explanation for the low ninespine stickleback abundance during 2008-
2016 is that piscivores began to incorporate ninespine sticklebacks into their diets as the abundance of 
alewives has remained at a low level.  For example, Jacobs et al. (2013) found ninespine sticklebacks to 
show up in large Chinook salmon diets (i.e., 2% occurrence) during 2009-2010 after 0% occurrence in 
1994-1996.   
 
LAKE-WIDE BIOMASS 
 
We estimated a total lake-wide biomass of prey fish available to the bottom trawl in 2016 of 11.4 
kilotonnes (kt) (1 kt = 1000 metric tons) (Figure 12a, Appendix 1).  Total prey fish biomass was the sum 
of the population biomass estimates for alewife, bloater, rainbow smelt, deepwater sculpin, slimy sculpin, 
ninespine stickleback, and round goby.  Total prey fish biomass in Lake Michigan has trended downward 
since 1989, primarily due to a dramatic decrease in bloater biomass (Figure 12a).  Total biomass first 
dropped below 30 kt in 2007, and has since remained below that level with the exception of 2013 (when 
the biomass estimates for alewife and round goby were highly uncertain). 

 
As Figure 12b depicts, the 2016 prey fish biomass was apportioned as: bloater 51.3% (5.86 kt), deepwater 
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sculpin 26.3% (3.0 kt), round goby 9.9% (1.13 kt), slimy sculpin 7.0% (0.80 kt), alewife 3.0% (0.35 kt), 
rainbow smelt 2.5% (0.28 kt), and ninespine stickleback 0.02% (0.003 kt). 
 
OTHER SPECIES OF INTEREST 
    
Burbot – Burbot and lake trout represent the native top predators in Lake Michigan.  The decline in 
burbot abundance in Lake Michigan during the 1950s has been attributed to sea lamprey predation (Wells 
and McLain 1973).  Sea lamprey control was a necessary condition for recovery of the burbot population 
in Lake Michigan, however Eshenroder and Burnham-Curtis (1999) proposed that a reduction in alewife 
abundance was an additional prerequisite for burbot recovery. 
 
Burbot collected in the bottom trawls are typically large individuals (>350 mm TL); juvenile burbot 
apparently inhabit areas not usually covered by the bottom trawl survey.  Burbot biomass density was 
0.06 kg per ha in 2016, the lowest estimate since 1983 when none were captured.  After a period of low 
numeric density in the 1970s, burbot showed a strong recovery in the 1980s (Figure 13a).  Densities 
increased through 1997, but declined thereafter.  It is unclear why burbot catches in the bottom trawl 
survey have declined in the face of relatively low alewife densities. 

 
Figure 13. Biomass density (+/- standard error) of burbot (a) and numeric density (+/- standard error) of age-
0 yellow perch (b) in Lake Michigan, 1973-2016. 

Age-0 yellow perch − The yellow perch population in Lake Michigan has supported valuable recreational 
and commercial fisheries (Wells 1977).  GLSC bottom trawl surveys provide an index of age-0 yellow 
perch numeric density, which serves as an indication of yellow perch recruitment success.  The 2005 
year-class of yellow perch was the largest ever recorded (Figure 13b) and the 2009 and 2010 year-classes 
also were higher than average.  In 2016, age-0 yellow perch abundance was only 2.4 fish per ha, which is 
indicative of a weak year-class.   
 
 
CONCLUSIONS 
 
In 2016, total prey fish biomass was estimated to be 11.4 kt, a 275% increase over 2015.  This increase 
cannot be attributable to the new estimation for calculating area swept in 2016.  The trawl widths that we 
measured while deploying the bottom trawl from the R/V Arcticus during June 2016 were 30% greater 
than those measured off the R/V Grayling, whereas time on bottom measured during June 2016 with the 
R/V Arcticus was 24% less than that measured previously off the R/V Grayling.  Thus, the increase in 
trawl width was nearly balanced by the decrease in time on bottom such that the total prey fish biomass 
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estimated by the swept-area equations corresponding to R/V Grayling operation would have been 11.7 kt, 
which was very similar to the estimate of 11.4 kt derived from using the swept-area equations 
corresponding to R/V Arcticus operation.  Relative to previous years in the time series, however, total 
prey fish biomass for 2016 was still relatively low- the third lowest estimate ever.     
 
This low level of prey fish biomass can be attributable to a suite of factors, two of which can be clearly 
identified:  (1) a prolonged period of poor bloater recruitment since 1992 and (2) intensified predation on 
alewives by salmonines during the 2000s and 2010s.  Adult alewife density has been maintained at a 
relatively low level over the last 11 years and the age distribution of the adult alewife population has 
become especially truncated in recent years.  As recent as 2007, alewives as old as age 9 were sampled in 
this survey, whereas the oldest alewife sampled in 2013-2014 was age 5 and the oldest alewife sampled in 
2016 was age 4.   
 
In addition to the importance of top-down forces, prey fishes also may be negatively influenced by 
reduced prey resources (i.e., “bottom-up” effects).  For example, several data sets are indicating a 
reduction in the base of the food-web- particularly for offshore total phosphorus and phytoplankton- as a 
consequence of long-term declines in phosphorus inputs and the proliferation of dreissenid mussels 
(Evans et al. 2011; Bunnell et al. 2014b).  Grazing of phytoplankton by dreissenid mussels appeared to be 
the primary driver of the 35% decline in primary production in offshore waters between the 1983-1987 
and 2007-2011 periods (Madenjian et al. 2015).  The evidence for declines in “fish food” (e.g., 
zooplankton, benthic invertebrates) in offshore waters of Lake Michigan is somewhat less clear.  Diporeia 
has undoubtedly declined in abundance (Nalepa et al. 2014), but whether or not crustacean zooplankton 
and mysids have declined depends on which data set is examined (e.g., Pothoven et al. 2010; Bunnell et 
al. 2014b; Madenjian et al. 2015).  Crustacean zooplankton biomass density in nearshore waters appeared 
to decrease during 1998-2010, likely due to a reduction in primary production mainly stemming from 
grazing of phytoplankton  by dreissenid mussels.  The above-mentioned decline in Diporeia abundance 
appeared to have led to reductions in growth, condition, and/or energy density of lake whitefish, alewives, 
bloaters, and deepwater sculpins during the 1990s and 2000s (Pothoven et al. 2011, 2012; Madenjian et 
al. 2015).  Of course, decreases in growth, condition, and energy density do not necessarily cause declines 
in fish abundance.  The challenge remains to quantify bottom-up effects on prey fish abundances and 
biomasses in Lake Michigan.  Given the complexities of the food web, disentangling the effects of the 
dreissenid mussel invasions and the reduction in nutrient loadings from other factors influencing the Lake 
Michigan food web will require a substantial amount of ecological detective work.   
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Appendix 1.  Mean numeric and biomass density, as well as lake-wide biomass (defined as biomass available to the 
bottom trawls for the region of the main basin between the 5-m and 114-m depth contours) estimates for various 
fishes and dreissenid mussels in Lake Michigan during 2016.  Estimates are based on the bottom trawl survey.  
Standard error enclosed in parentheses.  NA denotes that estimate is not available. 
 
 
 
 
 

 
 
Taxon 

 
Numeric density 

(fish per ha) 

 
Biomass density 

(kg per ha) 

 
Lake-wide 

biomass (kt) 
 
age-0 alewife 

 
22.05 

    (20.79) 
 

 
0.067 

 (0.062) 

 
     0.238 
    (0.218) 

 
adult alewife 

 
2.50  

  (1.42) 
 

 
0.031 

 (0.014) 

 
0.108 

    (0.048) 

 
age-0 bloater 

 
    160.29 
   (85.33) 

 

 
0.928 

 (0.488) 

 
     3.266 
    (1.719) 

 
adult bloater 

 
32.80 

  (18.38) 
 

 
0.736 

 (0.364) 

 
    2.590 

    (1.283) 

 
age-0 rainbow smelt 

 
66.23 

 (42.62) 
 

 
  0.044 
 (0.030) 

 
0.156 

    (0.106) 

 
adult rainbow smelt 

 
   3.68 
 (1.81) 

 

 
  0.036 
 (0.016) 

 
     0.125 
    (0.058) 

 
deepwater sculpin 

 
  146.02 

(24.07) 
 

 
  0.851 
 (0.160) 

 
    2.998 
   (0.564) 

 
slimy sculpin 

 
42.23 
(7.69) 

 

 
0.226 

 (0.052) 

 
    0.796 
   (0.184) 

 
ninespine stickleback 

 
0.67 

    (0.39) 
 

 
  0.0008 
 (0.0004) 

 
0.003 

   (0.001) 

 
burbot 

 
     0.06 
    (0.03) 

 

 
  0.059 
 (0.042) 

 
    0.209 
   (0.148) 

 
age-0 yellow perch 

 
    2.39 
   (2.04) 

 

 
0.011 

 (0.009) 

 
    0.037 
   (0.033) 

 
round goby 

 
     47.96 
   (23.38) 

 

 
0.321 

 (0.149) 

 
    1.129 
   (0.524) 

 
dreissenid mussels 

 
        NA 

 
 60.935  
(16.473) 

 
  214.591 

(58.013) 
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Abstract 

The USGS Great Lakes Science Center has conducted trawl surveys to assess annual changes in the 
offshore demersal fish community of Lake Huron since 1973.  Sample sites include five ports in U.S. 
waters with more recent sampling near Goderich, Ontario.  The 2016 fall bottom trawl survey was carried 
out between 19 and 31 October at all ports.  The 2016 main basin prey fish biomass estimate for Lake 
Huron was 26.7 kilotonnes, an increase of about 37 percent from 2015.  This estimate is the fourth-lowest 
in the time series, and is approximately 7 percent of the maximum estimate observed in 1987.  Adult 
alewife abundance was the second-lowest in the time series, but YOY alewife biomass was the highest 
estimated since 2003, before the alewife crash, although catches varied substantially among ports.  The 
estimated biomass of yearling-and-older rainbow smelt increased from that observed in 2015, but still 
remained very low compared to historical estimates.  YOY rainbow smelt abundance and biomass 
decreased from that observed in 2015.  Estimated adult bloater biomass was slightly less than the 2015 
estimate, while the abundance and biomass estimates for YOY bloater were the second-lowest of the time 
series, and more than an order of magnitude lower than any recent estimate.  Biomass estimates for 
deepwater and slimy sculpins, trout-perch, and ninespine stickleback increased over 2015, but all 
remained low compared to historic estimates.  The 2016 biomass estimate for round goby increased from 
2015 but remained at only 7 percent of the maximum observed in 2003.   

1Prepared for the Great Lakes Fishery Commission Lake Huron Committee Meeting, Ypsilanti, MI, March 2017. 
2The data associated with this report have not received final approval by the U.S. Geological Survey (USGS) and are 
currently under review. The Great Lakes Science Center is committed to complying with the Office of Management 
and Budget data release requirements and providing the public with high quality scientific data. We plan to make 
all USGS research vessel data collected between 1958 and 2016 publicly available from the GLSC website later in 
2017. The anticipated citation will be http://doi.org/10.5066/F75M63X0.  Please direct any immediate questions to 
our Information Technology Specialist, Scott Nelson, at snelson@usgs.gov. 
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Introduction

Lake Huron supports valuable recreational and commercial fisheries that may be at risk due to 
recent widespread ecological changes in the lake (Bence and Mohr 2008; Riley et al. 2013).  Recent 
major ecosystem changes in Lake Huron include the invasion of dreissenid mussels and drastic declines 
in the abundance of the native amphipod Diporeia spp. (McNickle et al. 2006; Nalepa et al. 2003, 2005, 
2007), decreases in growth and recruitment of lake whitefish Coregonus clupeaformis and Chinook 
salmon Oncorhynchus tshawytscha catches (Mohr and Ebener 2005; Bence and Mohr 2008; Gobin et al. 
2015), significant changes in the abundance and species composition of the zooplankton community 
(Barbiero et al. 2009), the invasion of the round goby Neogobius melanostomus, and the changes in the 
distribution and abundance of fish species that make up the offshore demersal fish community (Riley et 
al. 2008; Riley and Adams 2010).   

The USGS Great Lakes Science Center (GLSC) began annual bottom trawl surveys on Lake 
Huron in 1973, and the first full survey with ports covering the Michigan waters of the lake was 
conducted in 1976.  These surveys are used to examine relative abundance, size and age structure, and 
species composition of the offshore demersal fish community.  The purpose of this report is to present 
estimates of the relative abundance and biomass of offshore demersal fish species that are important as 
prey to common predators in the lake (i.e., lake trout Salvelinus namaycush and Chinook salmon).   

Methods 

The GLSC has monitored fish abundance annually from 1973-2016 using 12-m headrope (1973-
1991) and 21-m headrope (1992-2016) bottom trawls at fixed transects at up to eleven depths (9, 18, 27, 
36, 46, 55, 64, 73, 82, 92, and 110 m) at five ports (Detour, Hammond Bay, Alpena, Tawas [Au Sable 
Point], and Harbor Beach) in the Michigan waters of Lake Huron (Fig. 1).  Both trawls used a 4.76 mm 
square mesh cod end.  The same fixed transects were sampled each year from the USGS R/V Kaho during 
1973-1977, the USGS R/V Grayling during 1978-2014, and the USGS R/V Arcticus in 2015-2016; some 
transects were fished from the USGS R/V Cisco in 1990.  Sampling has been conducted at Goderich 
(Ontario) since 1998 using the same trawling protocols as U.S. ports; this port was sampled in 2016.    

Single 10-min trawl tows were conducted during daylight at each transect each year.  Tow 
duration was occasionally less than 10 min due to large catches or obstacles in the tow path; catches for 
these tows were corrected to be equivalent to 10-min tows (see formula below).  Trawl catches were 
sorted by species and each species was counted and weighed in aggregate.  Large catches (> ca. 20 kg) 
were subsampled; a random sample was sorted, counted, and weighed, and the remainder of the catch was 
weighed for extrapolation of the sample.   

We applied correction factors to standardize trawl data among depths, as the actual time on 
bottom for each trawl increased with depth (Fabrizio et al. 1997).  Relative abundance was standardized 
to CPE (catch per 10 min on bottom) as 

TK
NC
t

t
10

= , 

where Ct is the catch per 10 min (CPE) on bottom for trawl type t, N is the catch, T is tow time, and Kt is 
a correction factor that varies with fishing depth (D in m) and trawl type such that K12 = 0.00400D + 
0.8861 for the 12-m trawl and K21 = 0.00385D + 0.9149 for the 21-m trawl.  Catches were expressed in 
terms of density and biomass (number/ha and kg/ha) by dividing the CPE by the area swept by the trawl.  
The area swept was estimated as the product of the distance towed (speed multiplied by tow time) and the 
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trawl width.  Trawl width estimates were depth-specific and were based on trawl mensuration data 
collected from the R/V Grayling in 1991, 1998, and 2005 (USGS unpublished data).  Catches were 
weighted by the area of the main basin of Lake Huron that occurred in each depth range.  Lake-wide 
relative biomass was estimated as the sum of the biomass of the common species sampled in the survey, 
and is not a true lake-wide estimate, as sampling is conducted only to 110 m and most Ontario waters are 
not sampled. 

We partitioned catches of alewife Alosa pseudoharengus, rainbow smelt Osmerus mordax, and 
bloater Coregonus hoyi into size-based age classes for analysis.  To do this, year-specific length cutoffs 
were predetermined from length-frequency data and then used to apportion the catches into age-0 fish 
(young-of-the-year, or YOY) and those age-1 or older (yearling and older, or YAO).   

To make density estimates from the 12 m headrope (1973-1991) and 21 m headrope (1992-2016) 
trawls comparable, we multiplied density estimates from the 12-m trawl (1976-1991) by species-specific 
fishing power corrections (FPCs) developed from a comparative trawl experiment (Adams et al. 2009).  
We applied FPCs greater than 1.0 to the density and biomass of alewife, rainbow smelt (YAO only), 
bloater, and FPCs less than 1.0 to the density and biomass of deepwater sculpin Myoxocephalus 
thompsonii.  Catches of trout-perch Percopsis omiscomaycus were not significantly different between the 
two trawls.  Insufficient data were available to estimate FPCs for ninespine stickleback Pungitius 
pungitius and YOY rainbow smelt; density estimates were not corrected for these species.   

Trawl surveys on Lake Huron are typically conducted between 3 October and 15 November.  In 
1992 and 1993, however, trawl surveys occurred in early- to mid-September, and these data were not used 
in this report because the distribution of many offshore species in the Great Lakes is highly seasonally 
variable (Dryer 1966; Wells 1968) and data collected in September may not be comparable to the rest of 
the time series.  In 1998, sampling was conducted in a non-standard manner, and these data were also 
excluded.  The fall survey was not conducted in 2000 and was not completed in 2008.  We did not use 
data prior to 1976 because all ports and depths in Lake Huron were not consistently sampled until 1976.  

Results 

The 2016 Lake Huron fall bottom trawl survey was carried out during 19 - 31 October.  Forty-six 
trawl tows were completed and all standard ports were sampled. Three standard transects (19-37 m 
transects at Detour) were not sampled this year due to the presence of commercial fishing gear in the 
trawl path.  Fifteen fish species were captured in the 2016 survey: rainbow smelt, alewife, bloater, slimy 
sculpin Cottus cognatus, deepwater sculpin, trout-perch, spottail shiner Notropis hudsonius, emerald 
shiner Notropis atherinoides, lake whitefish, ninespine stickleback, lake trout, round goby, yellow perch 
Perca flavescens, white perch Morone americana, and white bass Morone chrysops. 

Alewife abundance in Lake Huron remained relatively low in 2016.  The abundance and biomass 
estimates for yearling and older (YAO) alewife were the second-lowest in the history of the survey (Fig. 
2).  Age-0 alewife density and biomass during 2016 were the highest estimated since 2003, before the 
alewife crash, but remained low compared to historic estimates (Fig. 2). YOY alewife catches varied 
spatially, with the majority of the fish captured at Hammond Bay and Alpena.  YAO rainbow smelt 
abundance and biomass estimates in 2016 increased from 2015 but remained low relative to historical 
estimates (Fig. 3).  YOY rainbow smelt abundance and biomass estimates were among the lowest 
observed in the time series.  YAO bloater abundance and biomass estimates decreased in 2016, and YOY 
bloater abundance and biomass were the second lowest estimates in the time series (Fig. 4). 

Abundance and biomass estimates for deepwater sculpins in 2016 increased over those observed 
in 2015 and were higher than any observed since 2012 (Fig. 5). Slimy sculpin were not captured by the 
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survey in 2014 and 2015, and 2016 abundance and biomass estimates remained relatively low compared 
to historic estimates (Fig. 5).  The 2016 abundance and biomass estimates for ninespine stickleback and 
trout-perch increased slightly from previous years (Fig. 6).  Round goby abundance and biomass 
estimates for 2016 decreased from 2015 levels and remained among the lowest estimates in the time 
series (Fig. 7).   

The total main basin prey biomass estimate (5 - 114 m) in 2016 was 26.7 kilotonnes, an increase 
of about 37percent from the 2015 estimate (Fig. 8).  This estimate is the fourth-lowest observed in the 
time series, similar to the extreme low estimates that occurred during 2009-2010, and represents 
approximately 7 percent of the maximum lake-wide biomass estimate observed in 1987.  Approximately 
42 percent of the 2016 biomass estimate was composed of YAO bloater, and 40 percent of the biomass 
estimate was made up of YOY alewife. This is the first time that either age class of alewife has made a 
substantive (>10%) contribution to lake-wide preyfish biomass since 2006.    

Discussion 

The abundance of prey fish in Lake Huron has remained at low levels since the collapse of the 
offshore demersal fish community in 2004 (Riley et al. 2008), although survey catches in 2012 suggested 
that several species were beginning to increase in abundance.  The estimated lake-wide biomass of prey 
fish in 2012 was the highest observed since 2001, while the 2013 estimate was approximately half as high 
as 2012. and the 2014 and 2015 estimates were even lower.  The estimated biomass of YAO rainbow 
smelt and alewife in 2016 were higher than in 2015 but remained among the lowest observed in the 
history of the survey.  The collapse of alewife in the lake may have been precipitated by an extremely 
cold winter (Dunlop and Riley 2013), but was likely ultimately caused by bottom-up controls due to 
reduced production at all trophic levels, which may have been related to the invasion of dreissenid 
mussels, and also by predators such as lake trout and Chinook salmon (Kao et al. 2016).  The persistence 
of low abundance estimates for exotic alewife and rainbow smelt is consistent with fish community 
objectives for Lake Huron (DesJardine et al. 1995), but does not bode well for Chinook salmon 
populations in the lake (Roseman and Riley 2009), which rely heavily on these species as prey (Roseman 
et al. 2014).   

YAO bloater showed a consistent positive trend in biomass for 2009-2012, but the 2013 estimate 
was much reduced from 2012, and while 2014 showed a modest increase over the 2013 levels, biomass 
then declined again in 2015 and 2016. The abundance of this native species is currently at a moderate 
level, higher than the extreme low estimates observed in 2001-2006.  Bloater biomass, however, is 
currently at low levels comparable to estimates observed during 2001-2006. Decreases in body condition 
of bloater may be associated with declines in abundance of lipid-rich prey, including Diporeia spp., in the 
lake (Prichard et al. 2016).  

Deepwater and slimy sculpins, ninespine sticklebacks, and trout-perch are typically minor 
components of lake trout diets in the Great Lakes (Diana 1990; Roseman et al. 2014), but were probably 
more important before the invasion of the lakes by alewife, rainbow smelt and round goby (Van Oosten 
and Deason 1938).  In 2016, biomass estimates for all of these species were greater than in recent years, 
but remain relatively low compared to historical estimates.   

Round goby have become a significant part of lake trout diets in some areas of the Great Lakes 
(Dietrich et al. 2006), including Lake Huron (Roseman et al. 2014).  Round goby were first captured in 
the Lake Huron trawl survey in 1997, reached a peak in abundance in 2003, and declined in abundance 
until increasing again in 2011-2012.  Our results suggest that they are currently at a moderate to low level 
of abundance in the offshore waters of Lake Huron, although sharp fluctuations in the time series indicate 
that abundance estimates for this species may be particularly sensitive to various environmental factors. 
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Moreover, round gobies primarily inhabit nearshore areas and tend to be most common on rocky 
substrates, and the Lake Huron bottom trawl survey may not provide a robust estimate of their relative 
abundance or biomass in the lake. 

The estimated lake-wide biomass of common offshore prey species in Lake Huron increased from 
2009 - 2012, but then decreased through 2015. The 2016 estimate represents an increase over 2015, but 
lake-wide biomass is still currently low and similar to the lowest estimates that occurred in 2006-2009. 
The peak estimated biomass of prey fish in Lake Huron occurred in the late 1980s, and has declined 
steadily since then; a similar decline has occurred in Lake Michigan and Lake Ontario (Bunnell et al. 
2015; Gorman and Weidel 2016). It is possible that these declines are associated with the invasion of the 
lakes by several exotic species, including the spiny water flea (Bythotrephes), zebra mussels, quagga 
mussels, and round gobies, all of which have been introduced since the mid-1980s (Bunnell et al. 2014; 
Kao et al. 2016).  However, similar declines in some species (particularly coregonines) have occurred in 
Lake Superior (Vinson et al. 2016), which has been less impacted by invasive species.   

Three trawl transects (19-37 m at Detour) were not sampled in 2016 due to the presence of 
commercial fishing gear within the trawl path.  Although the GLSC has communicated with commercial 
fishermen regarding the location of our transects, it is not uncommon for fishing gear to prevent sampling 
of 1-3 transects per year.  Retrospective analysis suggests that missing these transects has a minimal 
effect on our estimates of relative abundance and biomass (GLSC unpublished data).  In future, the GLSC 
will attempt to locate alternative safe trawl transects near to those that frequently support commercial 
fishing gear. 

Fish abundance estimates reported here are likely to be negatively biased, primarily due to 
variability in the catchability of fish by the trawl, which may reflect the vulnerability of fish to the gear 
and/or the distribution of fish off the bottom.  Many individuals of some demersal species may be pelagic 
at certain times and not available to our trawls, particularly young-of-the-year alewife, rainbow smelt, and 
bloater.  Results reported here should therefore not be interpreted as absolute abundance estimates for any 
species (see Riley and Dunlop 2016). 

Some of the fluctuations in the estimated abundance of individual species may be a result of 
changes in catchability caused by altered fish distributions.  For example, catchability of a given species 
might differ from year to year due to changes in temperature or food distribution, and observed changes in 
abundance might result from fish becoming less vulnerable to bottom trawls in recent years.  Time 
varying catchability is common in survey gear (Wilberg et al. 2010), and understanding how bottom-trawl 
catchability changes through time may provide great insights into our estimates of prey fish biomass.  The 
invasion of Lake Huron by dreissenid mussels may also have affected the efficiency of the trawl, as has 
been observed in Lake Ontario (O’Gorman et al. 2005).  Data reported here were collected at a restricted 
range of depths in areas that were free of obstructions and were characterized by sandy or gravel 
substrates, and it is therefore possible that USGS trawl data do not fully characterize the offshore 
demersal fish community.  There are no other published long-term data on offshore demersal fish 
abundance in Lake Huron that would allow us to investigate the representativeness of the trawl data.  
Despite the foregoing constraints, however, these data are currently the best available to assess trends in 
the Lake Huron offshore demersal fish community. 
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Figures 

Figure 1. Bottom trawl sampling locations in Lake Huron. 
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Figure 2.  Density of young-of-the-year (YOY: left panels) and adult (YAO: right panels) alewives as 
number (top panels) and biomass (bottom panels) of fish per hectare in Lake Huron, 1976-2016.  1976-
1991 estimates were corrected using fishing power corrections developed by Adams et al. (2009).  Error 
bars are 95% confidence intervals. 

Figure 3.  Density of young-of-the-year (YOY: left panels) and adult (YAO: right panels) rainbow smelt 
as number (top panels) and biomass (bottom panels) of fish per hectare in Lake Huron, 1976-2016.  1976-
1991 estimates for YAO were corrected using fishing power corrections developed by Adams et al. 
(2009); YOY data are uncorrected.  Error bars are 95% confidence intervals. 
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Figure 4.  Density of young-of-the-year (YOY: left panels) and adult (YAO: right panels) bloater as 
number (top panels) and biomass (bottom panels) of fish per hectare in Lake Huron, 1976-2016.  1976-
1991 estimates were corrected using fishing power corrections developed by Adams et al. (2009).  Error 
bars are 95% confidence intervals. 

Figure 5.  Density of slimy (left panels) and deepwater (right panels) sculpins as number (top panels) and 
biomass (bottom panels) of fish per hectare in Lake Huron, 1976-2016.  1976-1991 estimates were 
corrected using fishing power corrections developed by Adams et al. (2009).  Error bars are 95% 
confidence intervals. 

0

2000

4000

6000

8000

10000

12000

1975 1985 1995 2005

0

10000

20000

30000

1975 1985 1995 2005

0

500

1000

1500

1975 1985 1995 2005

0

10000

20000

30000

40000

1975 1985 1995 2005

0
100
200
300
400
500
600
700

1975 1980 1985 1990 1995 2000 2005 2010 2015

Ab
un

da
nc

e 
(N

um
be

r/h
a)

Year

0

1000

2000

3000

4000

1975 1980 1985 1990 1995 2000 2005 2010 2015

Bi
om

as
s 

(g
/h

a)

Year

0
100
200
300
400
500
600
700
800
900

1000

1975 1980 1985 1990 1995 2000 2005 2010 2015

Ab
un

da
nc

e 
(N

um
be

r/h
a)

Year

0
5000

10000
15000
20000
25000
30000
35000

1975 1980 1985 1990 1995 2000 2005 2010 2015

Bi
om

as
s 

(g
/h

a)
Year

0

2000

4000

6000

8000

10000

12000

1975 1985 1995 2005

0

10000

20000

30000

1975 1985 1995 2005

0

500

1000

1500

1975 1985 1995 2005

0

10000

20000

30000

40000

1975 1985 1995 2005

0

5

10

15

1975 1980 1985 1990 1995 2000 2005 2010 2015

Ab
un

da
nc

e 
(N

um
be

r/h
a)

Year

0
10
20
30
40
50
60
70

1975 1980 1985 1990 1995 2000 2005 2010 2015

Bi
om

as
s 

(g
/h

a)

Year

0

200

400

600

800

1000

1975 1980 1985 1990 1995 2000 2005 2010 2015

Ab
un

da
nc

e 
(N

um
be

r/h
a)

Year

0

2000

4000

6000

8000

10000

1975 1980 1985 1990 1995 2000 2005 2010 2015

Bi
om

as
s 

(g
/h

a)

Year

63



Figure 6.  Density of ninespine stickleback (left panels) and trout-perch (right panels) as number (top 
panels) and biomass (bottom panels) of fish per hectare in Lake Huron, 1976-2016.  Error bars are 95% 
confidence intervals. 
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Figure 7.  Density of round goby as number (top panel) and biomass (bottom panel) of fish per hectare in 
Lake Huron, 1976-2016.   
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Figure 8. Offshore demersal fish community biomass in the main basin of Lake Huron, 1976-2016. Valid 
data were not collected in 1992, 1993, 1998, 2000, and 2008; biomass estimates for those years represent 
interpolated values. 
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ABSTRACT 
Acoustic surveys were conducted in late summer/early fall during the years 1992-1996 and 2001-2016 to 
estimate pelagic prey fish biomass in Lake Michigan.  Midwater trawling during the surveys as well as 
target strength provided a measure of species and size composition of the fish community for use in 
scaling acoustic data and providing species-specific abundance estimates.  The 2016 survey consisted of 
34 acoustic transects [655 km total (407 miles)] and 68 midwater trawl tows. Mean prey fish biomass was 
5.5 kg/ha [26.7 kilotonnes (kt = 1,000 metric tons)], which was 31% higher than in 2015 and 23% of the 
long-term (21 years) mean.  The numeric density of the 2016 alewife year-class was 44% of the time 
series average and 1.7 times the 2015 density.  This year-class contributed 19% of total alewife biomass 
(3.9 kg/ha).  Survival estimates for age-1 alewife showed above-average survival for the 2013 and 2016 
alewife year classes.  In 2016, alewife comprised 72% of total prey fish biomass, while rainbow smelt 
and bloater were both 14% of total biomass.  Rainbow smelt biomass in 2016 (0.8 kg/ha) was 21% of the 
long-term mean and increased for the first time since 2008.  Bloater biomass in 2016 was 0.8 kg/ha and 
10% of the long-term mean. Mean density of small bloater in 2015 (307 fish/ha) was slightly lower than 
peak values observed in 2008-2009 but was twice the time series average (150 fish/ha).  Although prey 
fish biomass remains low relative to the 1990s, it did increase in 2016.  This increase, along with higher-
than-average survival of two recent alewife year classes, are likely a response to reduced predation 
pressure stemming from a reduction in the abundance of Chinook salmon.  Though it is possible these 
year classes may have had higher survival owing to abundance or timing of zooplankton prey, slow 
growth of larval alewife in 2015 suggests this was not the case in 2015. 

1Presented at:  Great Lakes Fishery Commission 
Lake Michigan Committee Meeting 
Ypsilanti, MI, March 20, 2017 
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INTRODUCTION 

Annual evaluation of long-term data on prey fish dynamics is critical in light of changes to the Lake 
Michigan food web during the last 40 years (Madenjian et al. 2002) and continued restructuring due to 
exotic species, pollution, fishing, and fish stocking.  Alewives are the primary prey in Lake Michigan and 
of especial importance to introduced salmonines in the Great Lakes (Elliott 1993; Rybicki and Clapp 
1996; Warner et al. 2008; Jacobs et al. 2013), however they are also predators of larval fish and are tied to 
thiamine deficiencies that contribute to recruitment bottlenecks in native fishes including lake trout 
(Salvelinus namaycush).  As such, alewives constitute an important component of the food-web.  The 
traditional Great Lakes Science Center (GLSC) prey fish monitoring method (bottom trawl) is inadequate 
for fish located off bottom (Fabrizio et al. 1997).  In particular, bottom trawls provide particularly biased 
estimates for age-0 alewives (Alosa pseudoharengus) based on catchability estimates from stock 
assessment modeling (Tsehaye et al. 2014).  Much of the alewife biomass will not be recruited to bottom 
trawls until age-3 (Madenjian et al. 2005), but significant predation by salmonines may occur on alewives 
≤ age-2 (Warner et al. 2008).  Alewife abundance patterns are largely driven by the age-classes that are 
not effectively sampled by bottom trawls; total alewife density is highly correlated with the density of 
alewife ≤ age-2 (Warner et al. 2008).  Because of the ability of acoustic equipment to count organisms far 
above bottom, this type of sampling is ideal for highly pelagic fish like age-0 alewives, rainbow smelt 
(Osmerus mordax), and bloater (Coregonus hoyi) and is a valuable complement to bottom trawl sampling.  
Further, these two long-term surveys have enabled the development of a stock assessment model for 
alewife (Tsehaye et al. 2014).       

METHODS 
Sampling Design 
The initial Lake Michigan survey adopted by the Lake Michigan Technical Committee (Fleischer et al. 
2001) was a stratified quasi-random design with three strata (north, south-central, and west) and unequal 
effort allocated among strata.  The location of strata and number of transects within each stratum was 
determined from a study of geographic distribution of species and the variability of fish abundance within 
strata (Adams et al. 2006).  A modified design was developed in 2004 (Warner et al. 2005), which 
included two additional strata (north and south offshore).  The initial three strata were retained, but their 
size was modified based on data collected in 2003 as well as NOAA Coast Watch Great Lakes node maps 
of sea surface temperature from 2001-2003.  In 2007-2016, the number of transects in each stratum was 
optimized based on stratum area and standard deviation of biomass using methods in Adams et al. (2006).  
The collection and analytical approach for 2016 acoustic and midwater trawl data was similar to that in 
2004-2013.  For a detailed description of the methods see Warner et al. (2009) and Warner et al. (2014).  
In short, each survey vessel samples along transects using scientific echosounders for estimation of total 
fish density.  While sampling those transects, we use midwater trawls to collect fish to determine species, 
size, and age (in the case of alewife) composition.  The numeric density of fish [fish per hectare (ha)] is 
split among the species captured in the trawls except in water >40 m below the surface, where species are 
determined using target strength     

RESULTS 
The 2016 acoustic survey of Lake Michigan was conducted by the United States Geological Survey 
(USGS), the United States Fish and Wildlife Service (USFWS), the Michigan Department of Natural 
Resources (MDNR), and the Little Traverse Bay Band of Odawa Indians (LTTBOI).  The main basin 
sampling consisted of 34 transects for a total transect distance of 655 km, which was similar to the 
sampling distance in Lake Huron in 2016 (O’Brien et al. 2017).  The bottom range over which acoustic 
data were collected was 4-234 m (13-767 ft).  Survey locations are shown in Figure 1.  

Alewife – The numeric density of the 2016 alewife year-class in 2016 was more than 1.7 times higher 
than the density age-0 alewife in 2015.  At 468 fish/ha, the 2016 estimate was 44% of the long-term 
mean.  While well below average, the numeric density of age-0 alewife in 2016 was the highest 
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Figure 1.  Location of acoustic (purple symbols) and midwter trawl (white symbols) samples in the 2016 
acoustic survey of Lake Michigan. 

since 2012.  The biomass density of age-1 or older alewife was 3.2 kg/ha (Figure 2), which was 33% of 
the long-term mean and similar to biomass density in 2015.  The biomass of alewife ≥ age-1 was 
predominantly the 2015 (48%), 2012 (33%), and 2013 (12%) year classes, respectively.  The 2010, 2011, 
and 2014 year classes together made up the remaining 7%.  Although the 2015 alewife year class had 
below average density in 2015, estimated survival [0.49, Nt+1/Nt, Ricker 1955)] to age-1 was more than 
twice the average for other year classes.  The acoustic biomass density estimate for all alewife was 
approximately 40 times the bottom trawl estimate in 2016  (Bunnell et al. 2017) and over the time series 
(years in which both surveys took place), the acoustic estimates have been greater than the bottom trawl 
estimates 81% of the time (17 years).  During the previous 16 years, acoustic biomass estimates were 
between 1.2 (2001) and 25 (2015) times the bottom trawl estimate for the same year.  Although we 
observed lower than average density of alewife in Lake Michigan, the density is still much higher than the 
density of alewife in Lake Huron as no alewife were caught during the Lake Huron acoustic survey 
(O’Brien et al. 2017).    

Spatial patterns in YOY and YAO alewife appear to be relatively complex (Figure 3).  Highest numeric 
densities of YOY alewife were observed far offshore at a midlake transect but there were also high 
densities observed in eastern and southern nearshore transects.  West nearshore and north nearshore 
transects densities were generally low.  In contrast, YAO alewife numeric densities were highest and 
similar at a southern nearshore transect north of Holland and northern nearshore transect east of 
Washington Island, WI but there were also relatively high densities observed at several transects south 
along the Wisconsin shoreline.  Additionally, large alewife (> 100 mm) have become less ubiquitous from 
2013 to 2016, with most of the decline in density we have observed occurring offshore (Figure 4). 
Densities of YAO alewife at bottom depths > 100 m have declined more than at shallower bottom depths 
(Figure 5) 
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Figure 2.  Biomass density of age-1 or older alewife (left panel) and Numeric density of age-0 alewife (right panel) 
in Lake Michigan during 1992-1996 and 2001-2016.  Error bars show one standard error.       

Figure 3.  Map of numeric density of YOY alewife (left map) and YAO alewife (right map) during August 2016. 
Symbol size corresponds to the acoustic estimate of density. 

Figure 4.  Map of presence and absence of large alewife (>100 mm) in Lake Michigan during the years 2013-2016. 
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Figure 5.  Mean numeric density of YAO alewife in Lake Michigan at a range of bottom depths in the years 2013-
2016.        

Rainbow smelt –At 178 fish/ha, numeric density of small rainbow smelt (<90 mm) in 2016 (Figure 6) 
was five times that in 2015.  This density was 88% of the time series mean of 203 fish/ha.  Similarly, at 
0.9 kg/ha, biomass density of large rainbow smelt (≥90 mm) increased from that observed in 2015. 
This was the first increase in the biomass density of larger smelt since 2008.  Even though acoustic 
biomass density estimates of large smelt have always exceeded bottom trawl estimates, both surveys 
show there has been an order of magnitude decrease from 1992-1996 to 2001-2014 (Bunnell et al. 
2015).  Recent low biomass is in stark contrast to observations from the late 1980s (Argyle 1992) but 
are consistent with the findings of Warner et al. (2012), who reported a shift in the pelagic fish 
community away from rainbow smelt numeric dominance in the mid-1990s following this period of 
dominance in the late 1980s.  In addition to highlighting the large decline in rainbow smelt biomass in 
Lake Michigan, data from recent years provide strong evidence that biomass density in Lake Michigan 
is lower than in Lake Huron, where the 2015 acoustic estimate of large rainbow smelt biomass density 
was 34 times that in Lake Michigan (O’Brien et al. 2016).   

Spatial patterns in rainbow smelt density differed from alewife.  Throughout much of the southern 
portion of the lake densities of small rainbow smelt were zero or near zero, but most transects in the 
northern third of the lake had densities at or near average density and three nearshore transects between 
Ludington, MI and Grand Haven, MI also had relatively high densities.  Densities of large rainbow 
smelt were zero throughout most of the lake and highest densities were observed in northern nearshore 
areas (Figure 7).   
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Figure 6.  Biomass density of large rainbow smelt (≥90 mm, left panel) and numeric density of small rainbow 
smelt (<90 mm, right panel) in Lake Michigan during 1992-1996 and 2001-2016.  Error bars show one standard 
error. 

Figure 7.  Map of numeric density of small rainbow smelt (<90 mm total length, left map) and large rainbow smelt 
(right map) during August 2016.  Symbol size corresponds to the acoustic estimate of density.       

Bloater –Densities of both small and large bloater have been variable in 2001-2016.  Mean numeric 
density of small bloater in 2016 (307 fish/ha) was 2 times the time series mean (Figure 8).  Biomass 
density of large bloater in 2016 was 0.5 kg/ha, which was 7% of the time series mean, and 2% of the 
mean in 1992-1996.  Bloater biomass has been only 14% of total prey fish biomass density in 2001-
2016, on average.  This is in contrast to the 1992-1996 period, when bloater made up 48% of total prey 
fish biomass density.  For much of the acoustic time series (1992-2006), estimates of biomass density of 
large bloater were lower than estimates from the bottom trawl survey.  From 2007-2014, acoustic 
estimates have been nearly five times bottom trawl estimates, on average (Bunnell et al. 2015) but in 
2016, the estimates were similar (0.5 kg/ha for the acoustic survey and 0.7 kg/ha for the bottom trawl 
survey). 
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Spatial patterns in bloater indicated different distributions for small and large bloater (Figure 9).  Highest 
densities of small bloater were generally in the southern two-thirds of the lake, with the maximum 
observed north of Holland, MI and average or higher densities at most transects in the southeastern 
nearshore.  However, we also observed densities of a similar magnitude at an offshore transect east of the 
base of the Door Peninsula in WI, and a southern offshore transect west of Holland, MI.  The highest 
densities of large bloater were generally in the northern half of the lake with many locations in the 
southern half of the lake near zero.  As with small bloater, the maximum density was observed at a 
southeastern nearshore transect north of Holland, MI. 

Figure 8.  Biomass density of large bloater (≥120 mm, left panel) from 1992-2016 (left panel), biomass density of 
large bloater for the years 2001-2016 (middle panel), and numeric density of small bloater (<120 mm, right panel) 
in Lake Michigan.  Error bars show one standard error. 

Figure 9.  Map of numeric density of small bloater (<120 mm total length, left map) and large bloater (right map) 
during August 2016.  Symbol size corresponds to the acoustic estimate of density.       
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ASSUMPTIONS 
As with any survey, it is important to note that trawl or acoustic estimates of fish density are potentially 
biased and, when possible, we should describe the effects of any bias when interpreting results.  With 
acoustic sampling, areas near the surface (upper blind zone 0-4 m) or near the bottom (bottom dead zone, 
bottom 0.3-1 m) are not sampled well or at all.  The density of fish in these areas therefore is unknown. 
Recent technological advances allow for acoustic sampling of the upper blind zone over large spatial 
areas but the cost of this technology has been prohibitive.  While our highest alewife and rainbow smelt 
catches and catch-per-unit-effort with midwater tows generally occur near the thermocline in Lake 
Michigan (Warner et al. 2008; Warner et al. 2012), it is possible that some are located in the top 4 m and 
can’t be captured with trawls because the ship displaces this water and the fish.   

We are less concerned with bias in alewife and rainbow smelt densities attributable to ineffective acoustic 
sampling of the bottom because of their pelagic distribution at night, when our sampling occurs.  In Lake 
Michigan, day-night bottom trawling was conducted at numerous locations and depths in 1987 (Argyle 
1992), with day and night tows occurring on the same day.  These data indicate that night bottom trawl 
estimates of alewife density in August/September 1987 were only 6% of day estimates (D.M. Warner, 
unpublished data).  Similarly, night bottom trawl estimates of rainbow smelt density were ≈ 6% of day 
estimates.  However, bloaters tend to be more demersal; in Lake Superior, night acoustic/midwater trawl 
sampling may detect only 60% of bloater present (Yule et al. 2007).  The day-night bottom trawl data 
from Lake Michigan in 1987 suggested that the availability of bloater to acoustic sampling at night was 
somewhat higher (mean = 76%, D. M. Warner, unpublished data).  Slimy sculpins (Cottus cognatus) and 
deepwater sculpins (Myoxocephalus thompsonii) are poorly sampled acoustically and we must rely on 
bottom trawl estimates for these species (Yule et al. 2008).  We also assumed that our midwater trawling 
provided accurate estimates of species and size composition.  Based on the relationship between trawling 
effort and uncertainty in species proportions observed by Warner et al. (2012), this assumption was likely 
reasonable.   

We made additional assumptions about acoustic data not described above.  For example, we assumed that 
all targets below 40 m with mean target strength (TS) > -45 dB were bloater.  It is possible that this 
resulted in a slight underestimation of rainbow smelt density.  We also assumed that conditions were 
suitable for use of in situ TS to estimate fish density, which could also lead to biased results if conditions 
are not suitable for measuring TS (Rudstam et al. 2009; Sawada et al. 1993) and biased TS estimates are 
used.  However, we used the Nv index of Sawada et al. (1993) to identify areas where bias was likely.  
We assumed that noise levels did not contribute significantly to echo integration data and did not preclude 
detection of key organisms.  This assumption was supported by our estimates of noise (Appendix 2).  
Detection limits were such that the smallest fish were detectable well below the depths they typically 
occupy.  Finally, we have assumed that the estimates of abundance and biomass are relative and do not 
represent absolute measures.  This assumption is supported by recent estimates of catchability derived 
from a multispecies age structured stock assessment model (Tsehaye et al. 2014).  Even though subject 
to various biases, our stratified random sampling design and use of standardized data processing 
techniques allow for comparisons of prey fish abundance estimates between years and 
throughout the time series.    
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NOTICE 
The data associated with this report have not received final approval by the U.S. Geological Survey 
(USGS) and are currently under review. The Great Lakes Science Center is committed to complying with 
the Office of Management and Budget data release requirements and providing the public with high 
quality scientific data. We plan to make all USGS research vessel data collected between 1958 and 
2016 publicly available from the GLSC website later in 2017. The anticipated citation will 
be http://doi.org/10.5066/F75M63X0.  Please direct any immediate questions to our Information 
Technology Specialist, Scott Nelson, at snelson@usgs.gov. 

All GLSC sampling and handling of fish during research are carried out in accordance with guidelines for 
the care and use of fishes by the American Fisheries Society (http://fisheries.org/docs/wp/Guidelines-for-
Use-of-Fishes.pdf). 

Table 1.  Numeric or biomass density, RSE, and 95% CI for age-0, YAO, total alewife, rainbow smelt, and bloater 
estimated from acoustic and midwater trawl data collected in Lake Michigan in 2016.  

Species Density RSE (%) 95% CI 

Total alewife 3.9 kg/ha 15 (2.9, 5.0) 

Age-0 alewife 468 fish/ha 31 (219, 717) 

YAO alewife 3.2 kg/ha 17 (2.3, 4.1) 

Rainbow smelt 286 fish/ha 15 (212, 361) 

Bloater 0.8 kg/ha 21 (0.5, 1.1) 

Total 5.5 kg/ha 14 (4.2, 6.8) 
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Parameter Dual beam 1992-
1996 

Dual beam 2001-
20051 

2016 Split2 

TS threshold (dB) -60 -773 -77
Pulse length determination level (dB) 6 6 6
Minimum normalized pulse length 0.32 0.8 0.7
Maximum normalized pulse length 0.72 1.8 1.5
Maximum beam compensation (dB) 6 6 6
Maximum standard deviation of minor-axis angles NA NA 0.6
Maximum standard deviation of major-axis angles NA NA 0.6
Over-axis angle threshold (dB) NA -1.0 NA
1Dual beam system was only used on the MDNR vessel Steelhead in 2001-2005. 
2Split beam systems were used on all vessels in 2006-2014. 
3Although a lower threshold was used in 2001-2014 only targets ≥-60 dB were included in analyses.  The lower 
threshold was used in the event that efforts were made to include smaller fish. 

Appendix 2.  Noise levels (mean and range of Sv at 1 m), detection limits, and acoustic equipment specifications in 
2016 for the R/V Sturgeon, S/V Steelhead, and M/V Spencer F. Baird.  

Vessel R/V Sturgeon S/V Steelhead M/V Spencer F. Baird 
Collection software Visual Acquisition 

6.0 
Visual Acquisition 

6.0 
ER60 2.2 

Transducer beam angle (3dB) 8.3º split beam 6.9º split beam 6.18 º split beam 
Frequency (kHz) 120 123 120 
Pulse length (ms) 0.4 0.4 0.256 
Two-way equivalent beam angle (dB) -19.34 -20 -20.5
Sv detection limit (m) for -60 dB 
target1 

>100 >100 >100 m

1 Assuming 3 dB signal-to-noise ratio.  

Appendix 1.  Single target detection parameters used in acoustic data analyses in 1992-1996, 2001-2005, and 2016. 
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